
Observational Supervision for Medical Image
Classification using Gaze Data

Khaled Saab1 (Q), Sarah M. Hooper1, Nimit S. Sohoni2, Jupinder Parmar3, Brian
Pogatchnik4, Sen Wu3, Jared A. Dunnmon3, Hongyang R. Zhang5, Daniel Rubin6, and

Christopher Ré3

1 Department of Electrical Engineering, Stanford University, Stanford, USA
ksaab@stanford.edu

2 Institute for Computational and Mathematical Engineering, Stanford University, Stanford, USA
3 Department of Computer Science, Stanford University, Stanford, USA

4 Department of Radiology, Stanford University, Stanford, USA
5 Khoury College of Computer Sciences, Northeastern University, Boston, USA
6 Department of Biomedical Data Science, Stanford University, Stanford, USA

Abstract. Deep learning models have demonstrated favorable performance on
many medical image classification tasks. However, they rely on expensive hand-
labeled datasets that are time-consuming to create. In this work, we explore a new
supervision source to training deep learning models by using gaze data that is
passively and cheaply collected during a clinician’s workflow. We focus on three
medical imaging tasks, including classifying chest X-ray scans for pneumothorax
and brain MRI slices for metastasis, two of which we curated gaze data for.
The gaze data consists of a sequence of fixation locations on the image from
an expert trying to identify an abnormality. Hence, the gaze data contains rich
information about the image that can be used as a powerful supervision source.
We first identify a set of gaze features and show that they indeed contain class-
discriminative information. Then, we propose two methods for incorporating
gaze features into deep learning pipelines. When no task labels are available, we
combine multiple gaze features to extract weak labels and use them as the sole
source of supervision (Gaze-WS). When task labels are available, we propose to
use the gaze features as auxiliary task labels in a multi-task learning framework
(Gaze-MTL). On three medical image classification tasks, our Gaze-WS method
without task labels comes within 5 AUROC points (1.7 precision points) of models
trained with task labels. With task labels, our Gaze-MTL method can improve
performance by 2.4 AUROC points (4 precision points) over multiple baselines.

Keywords: Medical Image Diagnosis · Eye Tracking · Weak Supervision.

1 Introduction

A growing challenge in medical imaging is the need for more qualified experts to read an
increasing volume of medical images, which has led to interpretation delays and reduced
quality of healthcare [25]. Deep learning models in radiology [5], dermatology [6], and
other areas [7] can increase physician throughput to alleviate this challenge. However, a
major bottleneck to developing such models is the need for large labeled datasets [7].



2 K. Saab et al.

Fig. 1: Illustration of the observational supervision framework. After passively collecting
gaze data from experts, we extract informative gaze data statistics which we use in two
settings: we turn multiple gaze data statistics into weak labels and combine them to train
a ResNet-50 CNN without task labels (top-right). We write helper tasks that predict gaze
statistics in a multi-task learning framework along with task labels (bottom-right).

Fortunately, studies in psychology and neurophysiology have shown that human gaze
data contains task-related information [38]. Specifically, past studies have shown eye
movement is driven by a reward-based mechanism, which induces a hidden structure in
gaze data that embeds information about the task [11]. Moreover, with recent advances
in eye tracking technology and the rise of commodity augmented reality, gaze data is
likely to become both ubiquitous and cheap to collect in the coming years [33,22]. Since
collecting gaze data would require no additional human effort in many real-world image
analysis workflows, it offers a new opportunity for cheap model supervision, which we
term observational supervision.

Can gaze data provide supervision signals for medical imaging? While prior work
from natural image classification have used gaze data for object recognition applications
[15,20,35], using gaze data in the context of medical image diagnosis introduces new
questions. For instance, the visual scanning process of medical image diagnosis is often
more protracted than in typical object recognition tasks [17], resulting in longer gaze
sequences containing richer task-related information. Therefore, it is not clear which
features of the gaze data are useful for supervising image diagnosis models, and how
much information can be extracted from them. To explore the above questions, we
collected gaze data from radiologists as they performed two medical imaging tasks.
The first is chest X-ray diagnosis for pneumothorax (i.e., a collapsed lunch), which is
a life threatening event. The second is MRI diagnosis for brain metastases, which is a
spreading cancer in the brain that requires quick detection for treatment. Our two novel
datasets, along with a public dataset on abnormal chest X-ray detection [14], represent
challenging real-world medical settings to study observational supervision.

In this work, we propose an observational supervision framework that leverages
gaze data to supervise deep learning models for medical image classification. First,
we use our three medical datasets to identify several critical statistics of gaze data
(summarized in Table 1) such as the number of uniquely visited regions. Second, we
use these gaze data statistics to weakly supervise deep learning models for medical
image diagnosis (Gaze-WS)—without relying on any task labels. Finally, we propose
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to combine gaze data statistics and task labels using a multi-task learning framework
to inject additional inductive bias from gaze data along with task labels (Gaze-MTL).
See Figure 1 for an illustration. The key intuition behind our approach is that gaze data
provides discriminative information through differences in scanning patterns between
normal and abnormal images. Interestingly, such signals can be explained using reward-
based modeling from the neuroscience literature [29]. Through a quantitative analysis,
we theoretically show that the discriminative power of a gaze sequence scales with the
size of the abnormal region and how likely the fixation occurs in the abnormal region.

We evaluate our framework on the three medical imaging tasks.7 Using only gaze
data, we find that Gaze-WS comes within 5 AUROC points (or 1.7 precision points) of
models trained using task labels. We achieve these results using attention statistics of
gaze data such as the number of uniquely visited regions in an image, which is smaller
for abnormal images than normal images. Using gaze data and task labels, we find that
Gaze-MTL improves performance by up to 2.4 AUROC points (or 4 precision points)
compared to previous approaches that integrate gaze data [18,28,20,15]. We observe that
measuring the "diffusivity" (see Table 1 for the definition) of an expert’s attention as a
statistic transfers most positively to the target task in multi-task learning.

2 Related Work

Deep learning models such as convolutional neural networks (CNNs) are capable of
extracting meaningful feature representations for a wide variety of medical imaging tasks,
ranging from cancer diagnosis [6] to chest radiograph abnormality detection [5]. Since
clinicians do not log structured task labels in their standard workflows, these works often
involve an expensive data labeling process. We instead explore a setting where we have
access to gaze data collected passively from clinicians during their workflows, which
we believe will become ubiquitous and cheap with recent augmented reality eyewear.
Our work is a first exploration in using gaze data as the main source of supervision for
medical image classification models.

Our work is closely related to object detection research that uses gaze data as auxil-
liary information [15,35,31,30,37]. A common approach from these works is to turn gaze
data into attention heatmaps [18,28,20]. For example, Karessli et al. demonstrates that
features derived from attention heatmaps can support class-discriminative representations
that improve zero-shot image classification [15]. Wang et al. [35] integrate gaze data into
the optimization procedure as regularization for training a support vector machine (see
also [8]). However, our work investigates gaze data collected from radiologists, which is
distinct from gaze collected during natural objection detection tasks. For example, the
gaze data that we have collected consists of long sequences of fixations as a result of a
protracted search process. By contrast, the gaze data from object detection tasks consists
of much shorter sequences [21]. This distinction brings a new challenge of how to extract
meaningful features from gaze data for medical imaging. There has also been recent
work investigating the integration of gaze data to improve medical diagnosis systems for
lung cancer screening [1,16] and abnormality detection in chest X-rays [14]. However,

7 Our two novel datasets and code are available at https://github.com/HazyResearch/observational.
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these methods are hindered by their need for gaze at test time. In our work, we propose
two novel approaches for using gaze data to weakly supervise deep learning pipelines
using tools from both data programming [24] and multi-task learning [26,36,39].

A different approach to deal with the high cost of labeling in medical imaging is
to is to extract labels from clinician reports. NLP models are trained to classify which
abnormalities are described in the text and can therefore act as automated annotators
when reports are present [23,34]. Such annotation tools, however, are expensive to
create and are application-specific. A cheaper and more flexible alternative is data
programming, where experts manually write heuristic functions that label data, which
has been applied to medical reports [4,27]. We view our approach as a complement to
NLP-based approaches. In scenarios where class labels are not found in medical reports
[2] or when NLP-based annotators are trained for a different language or task, gaze
is a viable alternative (via Gaze-WS). In scenarios where NLP-based annotators are
applicable, gaze may be used alongside the labels to further improve performance (via
Gaze-MTL). We believe it is a promising direction to explore combining gaze data and
NLP-based labeling for medical imaging in future work.

3 Data Collection and Methods

We start by introducing the datasets and gaze data collection process. Then, we present a
set of gaze features and describe a theoretical model for studying these features. Finally,
we present two approaches to supervising deep learning models using gaze data.

3.1 Gaze Data Collection and Features

Since medical imaging datasets with gaze data are not readily available, we collected
gaze data by collaborating with radiologists. We consider three datasets: classifying chest
X-rays for pneumothorax (CXR-P), classifying chest X-rays for a general abnormality
(CXR-A), and classifying brain MRI slices for metastasis (METS) (all binary image
classification). Positive and negative samples from each task can be found in Figure S.2.

For CXR-P, we use the SIIM-ACR Pneumothorax dataset [19], which contains 5,777
X-ray images (22% contain a pneumothorax). We took a stratified random sample of
1,170 images to form our train and validation sets, and collected task labels and gaze data
from three board-certified radiologists. We used the remaining 4,607 images as a held-out
test set. For CXR-A, Karagryis et al. [14] collected the gaze data of a radiologist reading
1,083 chest X-ray images taken from the MIMIC-CXR Database (66% abnormal) [13].
We reserved 216 random images as a held-out test set, and used the rest for train and
validation sets. Importantly, this dataset also gives us the advantage of evaluating our
methods on a different eye tracker. For METS, after receiving training from a board-
certified radiologist, we analyzed 2,794 MRI slices from 16 cases, comprising our train
and validation sets (25% contain a lesion). The held-out test set has 1,664 images.

To collect gaze data, we built custom software to interface with a screen-based Tobii
Pro Nano eye tracker. This state-of-the-art eye tracker is robust to head movements,
corrective lenses, and lighting conditions. At the start of each session, each radiologist
went through a 9-point calibration process. While in use, the program displays a single
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Table 1: A summary of gaze data statistics used in our framework, along with their
average difference in value between classes across our three tasks (class gap).
Feature Description Class Gap

Time on maximum patch Maximum time dedicated to a patch 0.09

Diffusivity Maximum time spent on any local region, where each
local region is an average of neighboring patches

0.21

Unique visits Number of uniquely visited patches 0.12

Time spent Total time spent looking at the image 0.10

image to the user and collects gaze coordinates. Once the user has analyzed the image,
they press a key to indicate the label given to the image. The program then saves the set
of gaze coordinates that overlapped with the image and displays the next image.

Gaze data statistics. By analyzing random samples of gaze sequences for multiple tasks,
we find that the “scanning behavior,” e.g., the amount of time the labeler spends scanning
over the image versus fixating on a specific patch, correlates strongly with task-related
information, such as the existence of an abnormal region in the image. We derive three
quantitative features for scanning behavior: time on maximum patch, diffusivity, and
unique visits (described in Table 1). We also consider the amount of time spent on a task,
since it has been shown to be indicative of task difficulty [3]. We also considered other
features such as total distance, velocity, and fixation angles, but found that they provide
less signal than those in Table 1. We provide a full list and detailed descriptions of gaze
features considered in Table S.4, and visualize the class-conditional distributions of our
key gaze data statistics in Figure S.1.

Modeling scanning behavior using a reward-based search model. We consider a
labeler actively searching for salient image features that contribute to their classification.
Drawing inspiration from neuroscience literature [29], we assume that the scanning
behavior is directed by a latent reward map with high rewards in task-informative regions
(e.g. an abnormal region in a radiograph) and low rewards in less informative regions (e.g.
background). Suppose that a reward ofQi is obtained by fixating at region i and that there
are p regions in total. We consider the gaze sequence of a labeler as a random sequence,
where the probability of visiting the i-th region is given by Pr(i) = exp(Qi)∑p

i=1 exp(Qi)
.

We show that the discriminative power of these gaze statistics scales with an inter-
esting quantity that we term the “attention gap.” Informally, the attention gap captures
the differences of experts’ scanning behaviors between normal and abnormal images.
Let Qno > 0 denote the reward of visiting a normal region and Qab > Qno denote the
reward of an abnormal region. Let p denote the total number of regions and s ∈ [0, 1]
denote sparsity—the fraction of abnormal regions. Therefore, for a random visit, the
probability that the visit lands in a particular abnormal region is equal to

1

p
· exp(Qab −Qno)
s · exp(Qab −Qno) + (1− s)

. (1)
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The above quantity is larger than 1
p as long as Qab > Qno, resulting in an “attention gap”

between abnormal and normal regions. Equation 1 reveals that the discriminative signal
in gaze features increases as the attention gap increases and the sparsity decreases.

3.2 First Observational Supervision Method: Gaze-WS

We propose a method that combines the gaze data statistics from Table 1 to com-
pute posterior probabilities of task labels, enabling model supervision using gaze data
alone. Given training pairs consisting of an image and a gaze sequence, denoted by
{(xi, gi)}ni=1, our goal is to predict the labels of test images—without being provided
gaze sequences at test time.

(i) We first compute m gaze features hi1 ∈ Ra1 , . . . , him ∈ Ram from each gaze
sequence gi. Specifically, we use four gaze data statistics from Table 1: time on max
patch, diffusivity, unique visits, and time spent. We use these features to compute labels
{ŷi}ni=1 that approximate the true (unobserved) class labels {yi}ni=1.

(ii) Using a small validation set, we fit two Gaussians to each feature—one each for
the positive and negative classes—which are used to estimate the likelihoods p(him|y) for
each unlabeled training sample. We assume the features are conditionally independent
and compute the posterior probability ŷi = P (yi = 1 | hi1, . . . , him) using Bayes’
theorem. We convert them to binary labels with a threshold selected via cross validation.

3.3 Second Observational Supervision Method: Gaze-MTL

We next consider a second setting, where we have both task labels and gaze data, and
propose a multitask learning (MTL) framework known as hard parameter sharing [26].
The idea is that gaze data contains fine-grained information such as task difficulty and
salient regions [10], which complements class labels. Specifically, we are given training
tuples consisting of an image, a gaze sequence, and a label, denoted by {(xi, gi, yi)}ni=1.
Our goal is to train an image classification model that predicts the labels of test images.
(Again, we do not assume access to gaze at test time.) Denote the domain of {xi} by X .

(i) For each sequence gi, we compute m gaze features hi1 ∈ Ra1 , . . . , him ∈ Ram .
(ii) We train a feature representation model (e.g., a CNN) fθ(·) : X → Rd with

feature dimension d parameterized by θ, along with the target task head A0 ∈ Rk×d
and helper task heads A1 ∈ Ra1×d, . . . , Am ∈ Ram×d. We minimize the following loss
over the training data:

L(θ) =
1

n

n∑
i=1

(
`0(A0fθ(xi), yi) +

m∑
j=1

αj`j(Ajfθ(xi), hij)

)
. (2)

Here `0 denotes the prediction loss for the main task. `1, . . . , `m denote prediction losses
for the m helper tasks, and α1, . . . , αm are hyperparameters that weight each helper task.
In our experiments, we used the soft cross-entropy loss [24] to predict the normalized
gaze features as the helper tasks.

In the above minimization problem, a shared feature representation model fθ(xi) is
used for the target task as well as all helper tasks. This is also known as hard parameter
sharing in MTL, and works as an inductive transfer mechanism from the helper tasks to
the target task. Importantly, at inference time, given an image, our model predicts the
label using the target task head alone. Hence, we do not require gaze data for inference.
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Fig. 2: Mean AUROC of Gaze-WS scales competitively to supervised learning on the
same CNN. The results are averaged over 10 random seeds and the shaded region
indicates 95% confidence intervals. We find that using gaze data as the sole supervision
source achieves within 5 AUROC points to supervised learning on the same CNN model.

4 Experimental Results

We validate that gaze data alone can provide useful supervision via Gaze-WS, and im-
proves model performance using Gaze-MTL. For all models, we train a ResNet-50 CNN
architecture [12] pretrained on ImageNet for 15 epochs using PyTorch v1.4.0. Common
hyperparameters were chosen by random search to maximize validation accuracy. Mod-
els were trained on two Titan RTX GPU’s, where a single epoch took approximately 8
seconds. More details are in our code. We choose the operating points that achieve the
same recall scores as previously published models: 55 for CXR-P [32], 90 for CXR-A
[5], and 53 for METS [9].

4.1 Using Gaze Data as the Sole Supervision Source

We empirically validate our hypothesis that gaze features alone can be used to supervise
well-performing medical image classification models. We compare the test performance
of Gaze-WS to that of a supervised CNN trained with task labels. We also measure
performance as the number of training samples varies (Figure 2).

This scaling analysis shows that Gaze-WS models improve with more weakly labeled
data and approach the supervised CNN performance, ultimately coming within 5 AUROC
points for CXR-P and CXR-A. Moreover, we find that Gaze-WS for CXR-P has higher
recall on small abnormalities (which are more difficult to detect in practice) compared to
the supervised CNN, but misses more of the large abnormalities. Intuitively, a labeler
may spend more time examining the smaller abnormalities, making them more easily
identifiable from the gaze features.

We next inspect the weak labels estimated by the gaze data for METS and CXR-P.
We find that the weak labels achieve a mean AUROC of 80 and 93 on CXR-P and METS,
respectively. This performance closely matches the intuition we develop in Section 3.
Recall that we expect the separation strengths to scale with dataset sparsity and attention
gap. For CXR-P and METS, we find that METS’ estimated sparsity (s = 0.03) is lower
and attention gap (z = 6.5) is higher than CXR-P’s (s = 0.07, z = 1.5), which indicates
we should expect larger separation strengths for METS.
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Table 2: Gaze-MTL improves upon supervised learning and multiple baseline methods
by up to 2.4 AUROC points on three medical imaging datasets. The results are averaged
over 10 random seeds with 95% significance.

Dataset Metric Image-only HM-REG CAM-REG Template ZeroShot Gaze-MTL
C

X
R

-P AUROC 81.5± 0.6 78.9± 1.8 78.3± 1.4 78.6± 1.4 82.1± 0.8 83.0± 0.5
F1-score 56.6± 0.7 50.2± 3.4 51.0± 3.3 53.5± 1.2 56.0± 0.8 57.5± 0.7
Precision 58.5± 1.4 48.7± 4.3 49.7± 4.2 52.2± 2.2 57.0± 1.7 60.2± 1.4

C
X

R
-A AUROC 83.8± 0.9 83.1± 0.6 82.9± 1.0 82.3± 1.2 83.2± 0.8 84.3± 1.6

F1-score 84.1± 0.9 83.9± 0.9 82.6± 1.8 81.7± 0.7 84.2± 0.9 84.5± 0.7
Precision 78.9± 1.5 78.5± 1.5 76.0± 3.2 74.7± 1.3 79.1± 1.6 79.4± 1.2

M
E

T
S AUROC 78.4± 1.8 77.6± 1.3 65.3± 1.8 56.0± 1.1 76.8± 1.9 80.8± 1.1

F1-score 53.4± 1.4 52.4± 1.2 49.5± 3.6 38.9± 1.4 34.7± 10.1 55.0± 1.2
Precision 53.5± 2.7 51.5± 2.7 48.1± 4.4 32.0± 1.1 52.7± 4.1 57.5± 2.6

Due to the noise in the weak labels, there is a clear tradeoff between the number
of labels, the ease with which those labels are collected, and model performance. For
instance, in CXR-P, Gaze-WS achieves the same performance as the supervised CNN
model using about 2× as many training samples. These results suggest that Gaze-WS
may be useful for passively collecting large quantities of noisy data to achieve the same
performance as a model trained with fewer (but more expensive) task labels.

4.2 Integrating Gaze Data along with Task Labels

We empirically validate our hypothesis that gaze data provides additional information
beyond the task labels and can be injected into model training to improve model perfor-
mance via multi-task learning. We train a CNN for each dataset using Gaze-MTL, and
compare its performance to a CNN with the same architecture trained with only task
labels, or trained by incorporating gaze data through the following existing methods:
CAM-REG [28], HM-REG [18], Template [20], and ZeroShot [15].

Table 2 shows that Gaze-MTL results in a performance improvement over each
baseline for our three medical tasks. We also find that different gaze features result in
larger performance boosts when used as auxiliary tasks for different datasets (Table S.2).

To further investigate which gaze features are most useful, we compute a task
similarity score between each gaze feature and the target task by measuring the impact of
transfer learning between the tasks. We find that the gaze features that have higher task
similarity scores with the target tasks are the same auxiliary tasks with which Gaze-MTL
achieved the largest gains (details in Table S.2).

It is common to use the class activation map (CAM), which highlights the areas of
an image that are most responsible for the model’s prediction, to reveal additional local-
ization information [27]. For CXR-P, we found the CAMs of Gaze-MTL to overlap with
the ground-truth abnormality regions 20% more often than the Image-only model. This
suggests that models trained with gaze provide more accurate localization information.
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The performance boost we see with Gaze-MTL suggests that it is a promising
method for integrating gaze data into ML pipelines. Particularly in high-stakes settings
where gaze data can be readily collected in conjunction with class labels, Gaze-MTL
may be used to integrate additional information from the expert labeler to boost model
performance, without requiring additional labeling effort.

5 Conclusions

This work introduced an observational supervision framework for medical image diag-
nosis tasks. We collected two eye tracking datasets from radiologists and presented two
methods for incorporating gaze data into deep learning models. Our Gaze-WS results
showed that using gaze data alone can achieve nearly comparable performance to fully
supervised learning on CNNs. This result is rather surprising and suggests that gaze
data provides promising supervision signals for medical imaging. Furthermore, our
Gaze-MTL results showed that gaze data can provide additional inductive biases that are
not present in human labels to improve upon the performance of models supervised with
task labels alone. We hope that our novel datasets and encouraging results can inspire
more interest in integrating gaze data into deep learning for medical imaging.
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Supplementary materials contain:
– Fig S.1: Visualization of class gaps in gaze features.
– Table S.1: AUROC, F1-score, and precision for Gaze-WS.
– Fig S.2: Positive and negative samples from each dataset.
– Table S.2: Ablation studies for Gaze-MTL.
– Table S.3: Additional details for Gaze-MTL.
– Table S.4: A comprehensive list of gaze features for reference.

Fig. S.1: Visualization of gaze features by class. The gaze feature distributions differ
significantly between normal and abnormal classes, indicating the class-discriminative
signal present in gaze features.

Table S.1: AUROC, F1-score, and precision for Gaze-WS. The results are averaged
over 10 random seeds with 95% confidence intervals. The operating points were chosen
such that the recall was 53, 90, and 55 for CXR-P, CXR-A, and METS, respectively.

Dataset Metric Hand-Label Supervision Gaze-WS

CXR-P
AUROC 81.5± 0.6 76.6± 1.0
F1-score 56.6± 0.7 50.3± 0.8
Precision 58.5± 1.4 46.4± 1.3

CXR-A
AUROC 83.8± 0.9 79.0± 1.3
F1-score 84.1± 0.9 82.8± 0.6
Precision 78.9± 1.5 76.5± 1.0

METS
AUROC 78.4± 1.8 72.9± 1.9
F1-score 53.4± 1.4 50.4± 1.4
Precision 53.5± 2.7 48.3± 2.6
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Fig. S.2: Images from the three medical tasks. For each pair, the left image is abnormal,
and the right is normal.

Table S.2: Ablation studies for Gaze-MTL. We find that transfer learning – i.e. training
a model only on the helper task (Gaze-Model) then finetuning the classification head on
the target task (Gaze-TL) – is indicative of multi-task learning performance. The results
are averaged across 5 random seeds with 95% confidence intervals. Accuracy is reported
for (multi-class) salient region, while AUROC is reported for diffusivity and time.

Task Gaze Feature Gaze-Model Gaze-TL Gaze-MTL Boost

CXR-P
Salient Region (Acc) 83.7± 0.9 82.3± 0.5 +1.4

Diffusivity 54.8± 4.5 57.5± 4.7 +0.4
Time 61.6± 4.4 62.2± 4.6 +0.7

CXR-A
Salient Region (Acc) 59.6± 2.2 59.5± 2.2 −0.3

Diffusivity 62.2± 3.8 63.3± 5.7 +0.5
Time 73.2± 1.7 75.0± 1.0 +0.1

METS
Salient Region (Acc) 90.2± 0.6 81.4± 0.7 +0.3

Diffusivity 94.1± 0.5 89.7± 0.7 +2.4
Time 92.0± 0.5 82.6± 0.8 −4.9

Table S.3: Addtional details for Gaze-MTL. Helper task performance and parameters.
Task Learning Rate Weight Decay Gaze Feature Helper Task Weight (α) Helper Task Performance

CXR-P 0.0001 0.0001 Salient Region 0.5 84.2 ± 1.5 (Acc)
CXR-A 0.0001 0.01 Diffusivity 1.0 61.5 ± 8.1 (AUROC)
METS 0.0001 0.00001 Diffusivity 0.5 92.3 ± 0.6 (AUROC)

Table S.4: Additional gaze features. A comprehensive list of gaze features that we
have analyzed in the experiments (for reference). Here, we denote a gaze sequence by
g = {(gjx, gjy, tj), j = 1, .., n} and the total time by

∑n
1 t

j = T .
Feature Description

Time Mean and variance of [t1, t2, ..., tn]
Distance Mean and variance of [d2, d3, ..., dn], di is the distance between consecutive fixations
Velocity

∑
di

T
Fixations Total number of fixations n, and the fixation rate n

T
Alpha angle Mean and variance of [α2, α3, ..., αn], where αi is the angle between the segment connecting

(gi−1
x , gi−1

y ) and (gix, g
i
y), and the horizontal plane

Beta angle Mean and variance of [β2, β3, ..., βn−1], where βi is the angle between three fixations (gi−1
x , gi−1

y ),
(gix, g

i
y), and (gi+1

x , gi+1
y )

Side bias Percentage of time spent on the left, right, top, and bottom halves


