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SYNOPSIS 
 
While recent scientific studies suggest that Artificial Intelligence (AI) could provide value in 
many radiology applications, much of the hard engineering work required to consistently 
realize this value in practice remains to be done.  In this chapter, we summarize the various 
ways in which AI can benefit radiology practice, identify key challenges that must be 
overcome for those benefits to be delivered, and discuss promising avenues by which these 
challenges can be addressed.      
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KEY POINTS 
 
• AI systems can provide value to radiologists in a number of ways, ranging from reduced 

time on task to discovery of new knowledge 
• Potential challenges in deploying AI systems for radiology include myriad technical 

issues, difficulties mitigating algorithmic bias, and poor alignment between measured 
performance and clinical value 

• Promising directions to address these challenges include improved software engineering 
practices, close clinician involvement in model development, and robust post-deployment 
monitoring 

 



 

 

 While recent scientific studies suggest that Artificial Intelligence (AI) could provide 

value in many radiology applications, much of the hard engineering work required to 

consistently realize this value in practice remains to be done.  In this chapter, we summarize the 

various ways in which AI can benefit radiology practice, identify key challenges that must be 

overcome for those benefits to be delivered, and discuss promising avenues by which these 

challenges can be addressed.      

 

How Can AI Provide Value to Radiologists? 

 Though headlines often gravitate towards AI systems that claim to perform as well as or 

better than humans on a particular task, AI can provide value to radiologists in several specific 

ways.  These include automated information extraction from imaging exams, increased 

diagnostic certainty, decreased time on task, faster availability of results, reduced cost of care, 

better clinical outcomes, discovery of new knowledge, and improved patient access to 

radiological expertise.1,2   While other chapters in this volume describe such applications in 

detail, we provide a brief overview here. 

Leveraging information contained within an image to make prognostic and diagnostic 

decisions is a core component of radiology practice; AI systems can provide value to radiologists 

by enabling them to do so more effectively.  For instance, while a clinician’s diagnostic ability is 

defined by a combination of first principles knowledge and experience with specific cases, an AI 

system can leverage information contained in millions or billions of data points to refine how 

image features are mapped to prognostic or diagnostic outputs.  Recent analyses of AI models 

trained on large radiology datasets demonstrate the potential not only to improve diagnostic 

sensitivity or specificity,3,4 but also to yield novel image features that correspond more directly 



 

 

to the outcome of interest than those that comprise existing standards.5  Furthermore, the fact that 

AI systems can perform such analysis with high levels of standardization across patients5 – and 

without being vulnerable to fatigue or cognitive biases – can yield substantial value in the real 

world.2,6  AI-based approaches can augment human analysis both by surfacing information that is 

not readily apparent and by improving the utility of reconstructed images for human readers.7   

 AI systems can also provide value to radiologists by increasing the speed with which 

imaging results are processed and by reducing required clinician effort.  Automated optimization 

of worklists, for instance, can reduce time-to-treatment for life-threatening and severe conditions 

while still ensuring human review of all cases.1,2,8,9  With appropriate algorithmic design and 

human factors engineering, the integration of AI-based triage and second read systems into 

clinical workflows holds the potential to decrease the time required per case.  This would 

simultaneously increase patient access, lower costs, and improve outcomes by enabling 

radiologists to spend more of their time on cases that require substantial analysis.1  Decreased 

time requirements would also help to alleviate the workforce shortage that radiology is expected 

to experience in the coming years as demand for services continues to increase.1 

 Finally, the consistent use of AI systems in radiology practice can yield new knowledge 

that improves patient care.  The development of “radiomic” features that are not discernable by 

the human eye, but may nonetheless be predictive of outputs ranging from diagnosis to prognosis 

to treatment response, represents a particularly promising area of research.10   AI can also play a 

supporting role in such tasks as patient selection, tumor tracking, and adverse event detection 

that can inform the clinical trials necessary to create new forms of diagnosis and treatment.11 

 AI systems that provide value in each of these ways have been conceptualized – and in 

some cases evaluated for clinical use – across a wide variety of applications, many of which have 



 

 

been detailed in this volume.11  The balance of this chapter will describe important pitfalls in 

development and deployment of these systems that must be addressed in order for AI systems to 

provide widespread value for radiologists.   

 

What Challenges Must Be Overcome for AI to Provide Value to Radiologists? 

Translating the potential that academic studies and early clinical trials have shown into 

concrete improvements in radiology practice will require that researchers and practitioners alike 

be aware of the challenges that can accompany the development and deployment of AI systems 

in radiology applications.  This section provides an overview of the major pitfalls that AI 

systems face in radiology, and the subsequent section will outline compelling approaches for 

addressing these challenges. 

 

Meaningful Performance Measurement 

The first, and perhaps most important challenge in developing an AI system for radiology 

is ensuring that the task of interest is sufficiently well-posed that performance can be 

meaningfully measured.  Defining a suitable clinically relevant task is not always as easy as it 

might seem.  Consider the example of chest X-ray (CXR) classification, a commonly studied 

application of AI.  Much work in this area has focused on developing deep learning models that 

classify CXRs into one of the 14 different classes used in Rajpurkar et al.,3 but it is clear that 

several of these classes (e.g. atelectasis, consolidation, infiltration) can be inconsistently 

understood across different clinicians.  As a result, models trained for this particular task may 

confuse these three classes, or may provide outputs with which certain clinicians would agree 

more than others.  Such ambiguity in task definition reduces our ability to effectively measure 



 

 

performance.12  Furthermore, it is critical to ensure that the measure of AI system performance is 

directly related to the outcome of interest.  It is not immediately clear, for instance, that high 

levels of performance on a 14-class CXR abnormality classification task will translate into one of 

the types of value described previously (e.g. reduced radiologist time, improved diagnostic 

certainty).  In fact, one could argue that framing this task in a slightly different way – binary 

normal versus abnormal CXR triage for worklist prioritization4,8 – could provide more direct 

clinical value because its place in the clinical workflow is clear, and metrics like turnaround time 

for high-priority cases can be immediately computed.  Collaboration between radiology domain 

experts and AI developers will remain key to ensuring that AI systems are developed for tasks 

that are meaningful, and that performance is measured in ways that directly correlate with 

clinical value.   

Even when a clinically useful task has been defined, inappropriately chosen performance 

metrics can hinder model development (see the chapter by Dr. Kalpathy-Kramer for more detail).  

While sensitivity and specificity may be familiar to many clinicians, multi-class classification, 

segmentation, and reconstruction tasks are evaluated quite differently than binary classification, 

and metrics suitable to the task must be used.  Equity considerations are also important in 

designing suitable metrics.  For instance, it is often the case that deep learning models for 

classification perform well on classes that make up the majority of the training set, but perform 

poorly on classes that are small. In some situations, this could be acceptable – in which case 

unweighted metrics are commonly used –  but in others it would not, meaning that class-

weighted metrics should be reported.  Furthermore, the common use of Area Under the Receiver 

Operating Characteristic curve (AUROC) or Area Under the Precision Recall Curve (AUPRC) as 

figures of merit should be viewed with caution; while useful in describing overall classification 



 

 

performance, these metrics can be misleading because they do not indicate how a model will 

perform at the specific operating points that must be chosen in practice. 

In addition to computing an appropriate metric, evaluation procedures must be designed 

in a way that yields meaningful results.  A common error is assuming that models that are 

internally validated – i.e. that perform well on the same population on which they were 

developed – will continue to perform well when applied externally (i.e. to a different 

population).13  Evaluation datasets must represent the population upon which a model is intended 

to be used, otherwise performance computed thereon will be misleading.  When comparing 

multiple algorithms, performance should also be evaluated on a common dataset in order to 

provide meaningful information.14  Finally, a common pitfall in AI performance measurement 

occurs when the task schema is insufficiently granular to capture important variations in 

performance.  A common example of this phenomenon – which has been termed “hidden 

stratification”15 – occurs in classification problems when performance variation occurs due to a 

variable that the original dataset curators did not consider.  As shown in Figure 1, for instance, 

Oakden-Rayner et al.15 recently demonstrated that while a common CXR classification model 

yields an overall AUROC value of 0.87 for detecting pneumothoraces, that performance 

increases to 0.95 on images that display a chest drain and drops to 0.77 on images that do not.  

Thus, if this model had been deployed in practice, it would have performed much worse on the 

very population – pneumothoraces without a chest drain – that would be of clinical interest.  

Similar issues can cause models to be biased and perform poorly on a given subclass (e.g. non-



 

 

Caucasian patients) because it just so happens that (a) that subclass makes up a minority of a 

dataset and (b) the dataset was not labeled with subclass information. 

Figure 1. ROC curves for subclasses of models trained on multiple datasets.  Panel (a) shows 
model performance on different subclasses of the “abnormal” class for a model designed to 
detect abnormalities on radiographs from the Adelaide Hip Fracture dataset, panel (b) shows 
model performance on different subclasses of the “abnormal” class for a model designed to 
detect abnormalities in musculoskeletal radiographs from the MURA dataset, and panel (c) 
shows model performance on different subclasses of the “pneumothorax” class for a multi-class 
CXR classification model designed to detect 14 different pathologies on the CXR-14 dataset.  
From Oakden-Rayner et al.,15 with permission. 
 
 
Creating Training Datasets 

Once an appropriate task and measurement metric have been defined, creating an AI 

system to perform that task generally requires constructing a dataset on which a model will be 

trained.  In supervised learning, which dominates current applications in radiology, this requires 

curating labeled training data.  Unfortunately, the cost of creating these labeled datasets can limit 

the application of AI systems in clinical practice.  Using the work of Gulshan et al.16 as an 

example, 3-7 physicians, most of whom are licensed ophthalmologists, were reported to have 

graded every single one of 128,175 retinal fundus photographs. Conservatively assuming 3 

labelers per image, 15 seconds per image, and a $100 per hour rate, this comes out to a cost 



 

 

estimate in excess of $150,000 and 180 clinician-days for a single iteration of data labeling; in 

practice, multiple data labeling efforts are often necessary. 

Importantly, even meticulously labeled training sets are not guaranteed to support models 

that generalize across different diseases, modalities, imaging systems, classification ontologies, 

clinical protocols, and medical guidelines, all of which change over time and with different 

application contexts.5,13,17,18  This concept is known as distribution shift, and often causes model 

performance to degrade when used outside of the exact population on which the training set was 

constructed.  This behavior has been observed in a variety of medical applications including 

pneumonia detection on CXR,13 diabetic retinopathy detection on retinal fundus photographs,18 

and dermatology image classification,17 and remains arguably the dominant challenge in 

applying AI systems in practice.  While various mechanisms for handling distribution shift exist, 

this problem cannot be considered solved and mitigating it can remain a major cost driver for AI 

systems in radiology. 

A final reason that the burden of creating training datasets can be problematic for AI 

systems in radiology is that it can lock in outdated standards of care or treatment protocols.19  For 

instance, if an AI system for image triage was trained on a dataset that did not contain cases from 

a newly discovered disease such as COVID-19, it could spuriously deprioritize individuals with 

those infections.  Furthermore, continued use of models trained with expensive datasets that may 

someday reflect outmoded practice (e.g. x-ray scoring systems that disadvantage marginalized 

patient subpopulations5) would result in patients receiving medical recommendations that are 

below the modern standard of clinical care.  For radiologists, this issue may be particularly 

apparent for imaging protocols, which evolve over time and may be inconsistently implemented.  

As an example, widespread use of AI systems for CT analysis developed using a particular 



 

 

protocol for contrast timing may result in the continued use of that protocol even though it may 

be suboptimal for other reasons.1 

In summary, creating appropriately representative labeled datasets is likely to remain a 

challenge for widespread use of AI systems in radiology, both because of the cost associated and 

the inherent difficulty of ensuring that a dataset represents all important axes of variation, 

including variations caused by changes in radiology technology and practice in the future. 

 

Mitigating Algorithmic Bias 

 A major challenge for both users and developers of clinical AI systems is ensuring that 

they do not create or amplify biases in the provision of care that would disadvantage particular 

groups of patients.  In technical parlance, this involves building models that are “robust” to 

important variations in the patient population such as gender, ethnicity, socioeconomic status, 

and other protected factors.  As described above, creating representative datasets for training and 

evaluation of AI models is an important component of mitigating model bias, and it is worth 

further discussing specific error modes that can lead to biased datasets.  First, data from 

Electronic Health Records (EHRs) are often not meant for algorithm development, meaning that 

models developed using cohorts and labels drawn from EHRs may contain a variety of inherent 

biases such as those resultant from the use of billing codes rather than pathological descriptions 

for diagnoses.2  Second, because it can be difficult to access patient data (even for patients 

themselves), standard strategies for enrolling diverse populations in clinical development efforts 

can be difficult to apply.1,2  Some health systems also suffer from selection bias, where 

information that would be useful for data labeling is only recorded for cases of particular 

academic or clinical interest.  Furthermore, even with appropriate cohort design, data may either 



 

 

be missing20 or only available in certain segments of the population.  A particularly striking 

example of this situation was highlighted recently by the work of Kaushal et al.,21 which showed 

that the majority of AI studies in imaging performed in the United States leveraged data from 

only three states.  Prospective users of AI systems must be constantly vigilant for these types of 

dataset curation issues that can result in biased algorithms. 

 Common training approaches that do not account for such issues as hidden stratification 

or class imbalance can also result in biased models.  For instance, models are often trained to 

optimize average performance; such procedures result in models that perform well on majority 

classes (or subclasses) at the expense of less common groups in the population.   

Finally, it is worth pointing out that unintended bias can also occur in algorithms aimed at 

improving elements of the image reconstruction process in volumetric imaging.  For example, 

while both tomographic protocols and magnetic resonance imaging (MRI) could benefit from 

AI-based steps in the calibration, signal conditioning, denoising, and reconstruction processes, it 

is not always clear that mathematical transformations learned on a particular set of data or 

population will provide similar utility on other datasets.7  Common axes of variation that should 

be considered in dataset curation and algorithm design for such applications include scanner or 

hardware type, exam protocol, tracer type, patient characteristics, and other parameters that could 

affect image acquisition and reconstruction.   

 

Measuring Correlation Instead of Causation 

 A particularly concerning pitfall in deep learning systems has been their ability to make 

accurate predictions based on features that are correlated with the outcome, but which are non-

causal.  In radiology, examples include algorithms that predict severe disease when they 



 

 

recognize a portable scanner was used instead of a fixed x-ray machine (which would require the 

patient to be well enough to travel to the radiology department for the image), and those that rely 

on the presence of chest drains to predict pneumothorax.13,15  In dermatology, a prime example is 

a recent algorithm that used the presence of surgical markings to recognize melanoma in 

dermoscopic images.22 Because deep learning systems are usually optimized to maximize a 

specific performance metric without considering causality, they are prone to mistakes such as 

these, predicting outcomes based on confounding, non-causal features.  

 

Technical and Engineering Issues 

 Even if the risks described to this point are appropriately mitigated, a variety of common 

technical issues can result in AI systems that do not perform as designed.  One such problem is 

overfitting, which occurs when models perform well on a training set but poorly on a held-out 

evaluation set; this is often the result of insufficient regularization during training or distribution 

shift between training and evaluation sets.  Data leakage between training and evaluation sets 

occurs when samples that are in the evaluation set also appear in the training set, and leads to 

overly optimistic performance metrics on the evaluation set because the model was exposed to 

very similar examples during training (and it can memorize them rather than learn generally 

useful image features).  While the exact same examples can be included in both sets by accident, 

a more subtle version of this same error can occur when examples from the same patient are 

included in both training and evaluation sets.   

Poorly calibrated models can also be problematic.  A “calibrated” model is one in which 

the quantitative values output from the model reflect true probabilities; for example, if a well-

calibrated diagnostic algorithm predicts that each of four patients have a disease with 75% 



 

 

probability, one should expect that three out of those four patients would actually have the 

disease.  If a model is not calibrated, clinicians could erroneously interpret model outputs in a 

manner that would negatively affect patient care. 

 AI systems can also simply fail; because AI systems are a type of software, bugs are 

unfortunately a fact of life.  In radiology applications, particularly important types of engineering 

errors include images that are corrupted in transmission/storage and cause erroneous predictions; 

preprocessing differences between datasets or institutions that result in distribution shift; or 

simple coding errors that cause model weights to be incorrectly loaded or output to be incorrectly 

computed.  These errors can have real-world consequences, like a critically ill patient being 

deprioritized or benefits being withheld from needy individuals.23    

 Finally, for image enhancement and reconstruction applications, a major technical 

challenge involves ensuring that as AI algorithms generate images that are more suitable for 

human interpretation, they do not insert spurious information that was not in the original image.  

The difference between imputation (the recovery of lost or imperfectly acquired information), 

enhancement (making better use of existing information), and hallucination (the creation of 

information that was not in the original image) is often subtle, and it can be difficult even for 

domain experts to evaluate.7  As this area of the field – sometimes referred to as “upstream AI” – 

matures further, it will be critical to develop robust metrics and evaluation procedures to ensure 

that AI-enabled image processing techniques can provide value by improving image analysis 

without inserting spurious information. 

 

 

 



 

 

Post-Deployment Monitoring 

 Post-deployment monitoring represents an additional challenge for deployment of AI 

systems.  To mitigate issues related to distribution shift and model bias – as well as to 

continuously evaluate whether a model is providing the anticipated operational benefit – it is 

critical that models be constantly under assessment while deployed.  Various strategies for post-

deployment monitoring exist, including manual human audits of model output, automated 

algorithmic evaluation of distribution shift or hidden stratification, out-of-distribution (OOD) 

sample detection, and continued evaluation protocols, but many academic studies that 

demonstrate initial viability of an AI system do not consider how post-deployment monitoring 

should be implemented.15  Furthermore, when considering whether to deploy a given AI system, 

the cost of continuous monitoring – which includes subject matter expert time, additional data 

curation, and even the expense of taking a model out of service if it begins performing poorly – 

must be considered. 

 

Deployment Details 

 In addition to technical and functional issues, deploying AI algorithms in radiology 

practice raises a number of ethical, medicolegal, economic, and logistical questions that have not 

yet been convincingly resolved.   

First, if an outside developer creates a model, it must be decided how liability from 

mistakes that occur in the course of practice should be divided amongst the radiologist, the 

algorithm developer, the device manufacturer, and other relevant parties.6  Furthermore, it is 

often not clear how model output is explained to a patient, whether patients should be informed 

that AI algorithms were used in their care, and what recourse might be available toward 



 

 

disputing treatment decisions made based on model output.  These issues become even more 

fraught if models have been fine-tuned for a particular site or deployment environment, and may 

depend on whether a given model has been developed internally on custom or open-source 

tooling, has been developed internally using a commercial platform, or is provided via a 

software-as-a-service or model-as-a-service agreement.   

 Second, AI models and deployment hardware must be co-optimized to ensure that model 

execution time is sufficiently rapid to provide anticipated value.  In particular, if users of models 

deployed to edge devices (e.g. laptops, phones, etc.), on extremely large images (e.g. volumetric 

scans), or in time-critical contexts like interventional radiology do not ensure that sufficient 

compute capability and network bandwidth are available to support proposed use cases, the 

resulting slowdown in computing model outputs could have negative clinical consequences. The 

alternative, however, may be the deployment of expensive new hardware at clinical sites or the 

use of cloud processing, each of which involves its own risks and benefits. 

   Third, in order for models to be used ethically, policies regarding the use of and access 

to patient data by the patients, the treatment center, and any external parties must be explicitly 

delineated.  Unfortunately, in many contexts, public policy has not yet provided sufficient 

guidance for users to know exactly what procedures should be observed on this front. 

 Fourth, security considerations in deployment must be appropriately addressed.  Were 

bad actors to gain access to a model or the training data, various attacks can be envisioned that 

could reveal patient identity, interfere with treatment, or exfiltrate valuable data to which various 

parties (including the patient) have exclusive rights as well as expectations of privacy.  Proposed 

AI deployments in radiology often do not fully consider the scope of potential attack vectors on 

both data and models, and do not explicitly guard against such attacks as data poisoning 



 

 

(affecting model performance by altering training data) or model inversion (reconstructing 

training data from model parameters).  Remaining robust to these sorts of attacks is heavily 

related to post-deployment monitoring described above, and may benefit from specific 

approaches to model training and evaluation.24 

 

User Trust 

 In order for AI to provide value in radiology practice, these systems must gain the 

confidence of both patients and clinicians.  Concerns about the deleterious effects of automated 

assistance on radiologist performance, lack of interpretability in clinical decisions, and the 

potential for reinforcement of existing biases or outmoded practice must be overcome.19,25  

Automation bias is a serious problem wherein the very fact that human readers have algorithmic 

support causes them to trust the automated result even when it is flawed.  Deep neural networks 

have well-documented difficulties establishing exactly what reasoning led to a given model 

output.  The danger of introducing models that disadvantage particular patient groups is ever-

present.  As a result, to make effective and equitable use of AI in radiology, it is critical to design 

workflows that incorporate not only algorithmic input and broad clinical domain expertise, but 

also the individualized expertise that doctors have about the situation of each patient and the 

intimate knowledge that each patient has of their own body.20 

 

Regulatory Approval 

 Deployment of AI algorithms for clinical use cases will rarely occur outside the bounds 

of governmentally stipulated regulatory structures.  As a result, regulations for AI systems in 

radiology must be designed to balance potential improvements in patient care with the risks that 



 

 

such systems can pose if deployed incorrectly.  Though both governmental agencies26 and 

independent bodies27,28 have recently made substantial progress towards defining constructive 

paths forward, the evolving regulatory environment will likely mean that certain applications 

will move faster than others (e.g. computer assisted detection vs. computer assisted diagnosis), 

and that it will be particularly important for clinicians to understand exactly what models can and 

cannot do before using them in practice.  While substantial discussion of regulation for clinical 

AI models is handled in a separate chapter, it suffices to say that clinicians intending to use AI in 

practice should remain up to date on regulations governing system use, processes for approval, 

and associated reporting requirements.    

 

How Can These Challenges Be Overcome? 

 While the challenges described above are substantial, technical and operational 

approaches to mitigate nearly all of them either exist or are in development.  The degree to which 

AI algorithms can provide meaningful value in radiology practice will likely be determined by 

the effectiveness with which these techniques are implemented in practice and rigorously 

analyzed in the context of real-world operational data. 

 

Meaningful Performance Measurement 

Several concrete steps could help to improve performance measurement of AI models in 

radiology.  

First, common, widely available datasets suitable for evaluating performance on tasks of 

clinical interest should be constructed and continuously updated by objective bodies such as 

professional societies, academic consortia, or government agencies.  Importantly, these 



 

 

evaluation datasets should be labeled in a way that closely reflects the intended workflow into 

which the model will be deployed, as opposed to using arbitrary academic schema.  Existing 

efforts like datasets released by the Radiological Society of North America (RSNA), The Cancer 

Imaging Archive (TCIA), and others should be expanded.14,29–31  Furthermore, each task of 

clinical interest should have evaluation datasets that are frequently updated so that models can be 

evaluated on the latest imaging technologies and not be allowed to overfit to a particular 

evaluation set.   

Second, datasets should be labeled with important subclasses in order to enable analysis 

of potential model bias and reduce the impact of hidden stratification.  Recent unsupervised 

methods can also be used to algorithmically identify subclasses of interest.32 

Third, it may sometimes be beneficial to define the scope of model functionality more 

narrowly in order to enable sharper measurements of performance.8,33  Instead of aiming for a 

single model that can generalize across data from different institutions (i.e. multiple 

distributions), for instance, modelers could consider developing multiple different single-

institution models and avoid having to constantly measure relative performance across 

potentially different populations.  Conceptually, this idea resembles recent approaches from 

precision medicine. 33  If applied carefully, such a strategy could improve the utility of 

performance measurements for AI models in radiology.   

Finally, assessing model performance on downstream clinical tasks – rather than on 

intermediate performance metrics like accuracy – will help to ensure that performance is 

measured in a way that is clinically meaningful.  Ideally, direct comparison to existing baseline 

systems should be performed via randomized controlled trials wherein the AI system should be 

directly integrated into a clinician workflow and the downstream clinical outcome is measured.25  



 

 

The more realistic the setting is, and the closer that we can come to measuring clinical value 

rather than algorithmic performance, the more likely we are to arrive at a useful assessment of 

AI system utility. 

 

Creating Training Datasets 

 Recent technical progress on methods that can relieve the burden of creating and 

updating datasets has been promising.  First, methods from weak supervision have enabled large 

datasets with weaker, noisier labels to support AI models that perform similarly to those trained 

on hand-labeled datasets of similar size.34–36 Many of these methods directly leverage human 

expertise in a way that enables rapid relabeling and retraining to combat model performance and 

distribution shift issues.  Automated, NLP-based labelers have also shown promise in building 

labeled datasets, though adapting them to new domains can be labor-intensive.37,38   

 Other technical approaches have focused on leveraging additional sources of signal 

within the model training process.  Modern data augmentation techniques enable users to 

increase the effective size of training datasets by applying transformations to existing images 

without disrupting the meaningful features within those images.  Common examples include 

applying rotations to labeled images or synonymy swaps to labeled text in language modeling 

tasks.39,40  Multitask learning – building models that learn to perform multiple, related tasks 

simultaneously – can also help to decrease the number of labeled examples required by 

leveraging additional information from the dataset.  Transfer learning applies a similar approach, 

but usually involves two steps: (1) pre-training a model on a task that is related to the final task 

of interest and (2) fine-tuning that pre-trained model by continuing to train it on the task of 

interest.41  In medical computer vision applications, for instance, it is particularly common to use 



 

 

models that are pre-trained on the ImageNet database as a starting point upon which to train 

models for clinical use cases.8,11,33,42,43  Recent approaches from self-supervision and contrastive 

learning that leverage large, unlabeled datasets for model pre-training have also shown promise 

in reducing the required size of labeled datasets.44 

In clinical applications, another way that the data curation burden can be reduced is by 

standardizing protocols.  Instead of having to train models over images acquired via a wide 

variety of protocols – e.g. tube currents, voltages, and reconstruction settings in computed 

tomography – it can be advantageous to train models obtained using a standard protocol and then 

ensure that such models are only applied to images obtained using that standard protocol.  

Similar to the precision medicine perspective presented above, this approach trades off 

generalizability for a narrow task definition. 

 

Mitigating Algorithmic Bias 

 Combating algorithmic bias is one of the single most important tasks required to deploy 

AI models ethically and equitably within radiology practice.  In addition to constructing training 

data in as non-biased a way as possible, there exist several additional approaches that can help to 

mitigate this problem.     

 First, a variety of training algorithms focused on reducing the worst-case subgroup 

performance – that is, ensuring that there exists no subgroup of data on which a model performs 

substantially worse than another – have been the focus of recent research.32,45–47    As these and 

additional approaches for improving algorithmic fairness are developed, they should be 

considered for clinical translation.48 



 

 

Second, because these training algorithms are often used during model development rather 

than model deployment, clinical users may rarely interact with them.  However, clinical users 

will routinely be exposed to model output, and as a result tooling designed to clearly and 

dynamically evaluate model robustness will become an increasingly important part of successful 

AI deployments in radiology.49,50  Research and development studies focused on enabling 

clinical users to reliably determine which model features are most responsible for a given output, 

to quickly assess model performance on a wide variety of subclasses or subgroups, and to rapidly 

evaluate the effect of such variations on clinical outcomes would improve our ability to deploy 

models equitably. 

Finally, direct participation from physician and patient communities in model development 

and deployment can help to ensure that individuals are best served by these models in practice.  

Indeed, as pointed out by Esteva et al. in their recent review article,11 community participation 

recently enabled the discovery of dataset bias and identified demographics underserved by a 

model for population health management.51  A similar case occurred when evaluating models for 

detecting diabetic retinopathy in Southeast Asia, where socioeconomic factors heavily impacted 

model efficacy.18  If radiologists are able to deploy AI models in cooperation with their clinical 

communities – while ensuring that non-AI backups are used when appropriate – these 

capabilities stand a much better chance of having a clinical impact that is both positive and 

equitable. 

 
Measuring Correlation Instead of Causation 

 Ensuring that models do not rely on confounding variables in making their predictions 

requires many of the same strategies described above.  Model auditing by human actors can help 

to discover cases where models make the right prediction for the wrong reason.  External 



 

 

validation can be a particularly helpful tool in ensuring that dataset artifacts are not responsible 

for model performance.  Encouraging models to respect important invariances via data 

augmentation strategies can further reduce the possibility of non-causal features driving model 

predictions.  Finally, interpretability analyses such as heatmaps that identify which structures 

informed the algorithmic decisions52 and other visualization methods can help radiologists to 

identify such behavior before it becomes a problem.   

 

 

Figure 2. Image (left) and class activation map (right) showing the area that most heavily 
influenced a neural network designed for binary radiograph triage to provide an “abnormal” 
prediction.  Red indicates areas of relatively high contribution to an abnormal score, while blue 
areas indicate the opposite.  From Dunnmon et al., with permission.8 

 
 

Technical and Engineering Issues 

 Many of the technical issues described here should be identified and addressed by 

applying best practices from software engineering.  Clearly defining testing strategies before 

model development, ensuring that systems are routinely tested during deployment, and 

integrating the entire data processing pipeline into those procedures can reduce the probability of 



 

 

unintended errors making their way into critical software paths.  In radiology, the data processing 

pipeline includes data ingestion from hardware, image reconstruction, transfer to and egress from 

a Picture Archiving and Communications System (PACS), conditioning operations such as 

histogram equalization, and model inference.   

 

Post-Deployment Monitoring 

 Post-deployment monitoring can be accomplished in several ways, as described by 

Oakden-Rayner et al.15  First, if clinicians are able to define subgroups or performance tests of 

interest before model development, tests based on these definitions can be implemented and 

continuously evaluated for anomalous behavior during deployment.  Algorithmic auditing, where 

human experts periodically inspect model output to identify concerning trends, is often viable in 

cases where it is not possible to write a comprehensive set of tests before development.  Finally, 

recently developed algorithmic measures for assessing worst-case subgroup performance can 

provide value by identifying poorly performing groups without human intervention.32 

An important aspect of post-deployment monitoring is ensuring that cases on which the 

model was not intended to be executed – for instance, a lateral chest X-ray for a model that was 

trained on frontal exams – is not erroneously provided to a model for analysis.  The increasing 

amount of research dedicated to the task of identifying samples that are outside the distribution 

on which a model was intended to operate, commonly called “out-of-distribution (OOD) 

detection,” has provided encouraging evidence that OOD samples can be automatically identified 

and flagged.  OOD detection should become a standard tool in post-deployment monitoring 

suites, and should inform both deployment practice and future model development.  



 

 

Finally, consistent use of adverse event registers for AI systems in radiology could help 

to provide high-level monitoring for undesired outcomes.  Such registers are standard practice 

for deployed medical products, and for AI systems would simply record any untoward medical 

occurrence that happened while that system was in use.  Though they do not provide causal 

information, observational information from adverse event registers could be useful in post-

deployment monitoring for broadly deployed AI systems in radiology.   

 

Deployment Details 

 To address deployment challenges described above, additional development work is 

required on a number of fronts.  On medicolegal issues of liability, responsibility, and data 

rights, the larger volumes of case law that should be expected in the near future should help to 

directly resolve some of these questions.  On the hardware-software codesign front, effective 

systems engineering and modular design should become standard practice from model 

developers as the industry matures.  Hospitals may ultimately desire to invest in their own 

inference hardware (e.g. dedicated CPUs, GPUs, mobile devices), or even to run computation in 

a secure cloud environment; each of these decisions has advantages and disadvantages, and it is 

not clear what approach will become dominant.  Finally, we expect a similar trend in model 

cybersecurity.  As it becomes clear that both models and associated data have substantial 

economic value (and possibly legal protections), penetration testing and other traditional 

cybersecurity protocols will likely become an even more important part of medical information 

technology systems than they already are.  Practitioners can improve the chances of a successful 

AI deployment by accounting for the associated engineering and compliance costs up front, and 

ensuring that they weigh these costs against the expected value provided by the AI system. 



 

 

User Trust 

To improve user trust in AI systems for radiology, involving clinical and patient users in 

model and workflow development from the beginning is essential.  To be able to use a system 

confidently in practice, clinician users must have trained with it, internalized its strengths and 

weaknesses, and become comfortable with both integrating its output into their decision 

processes and explaining those processes to patients.  Like any clinical investigation, patient 

awareness and education will be paramount for effective engagement and improvement of care.  

Any improvements that can be made to model interpretability will assist clinician users in 

bridging this gap, and incorporating the possibility of a follow-up exam to confirm the 

predictions of an AI system would likely have positive outcomes in many cases.  In the end, user 

trust will only be developed insomuch as the benefit of the AI systems for concrete clinical 

decisions can be directly observed by clinicians and clearly communicated to patients.  

 
Regulatory Approval 

 Clinicians have an opportunity to work directly with the public policy community to 

create regulatory structures that incentivize innovation while maintaining appropriate safety 

standards.  Linking regulatory guidance and approval to standardized reporting for model 

development and performance such as the SPIRIT-AI and CONSORT-AI guidelines would not 

only provide clarity for regulatory approvers, but also ensure that users of a given AI-based 

system are well-informed about exactly how it was developed, precisely what population it was 

intended for, and any other items that would be important for post-deployment monitoring and 

clinical use.  While much work in this area remains to be done, progress in recent years has been 

rapid, and we expect that the regulatory environment will continue to mature in the near future.  



 

 

Regulatory issues for AI systems in radiology are discussed in further detail in a separate chapter 

from Harvey et al. 
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