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Chest radiography represents the initial imaging test for 
important thoracic abnormalities ranging from pneu-

monia to lung cancer. Unfortunately, as the ratio of image 
volume to qualified radiologists has continued to increase, 
interpretation delays and backlogs have demonstrably 
reduced the quality of care in large health organizations, 
such as the U.K. National Health Service (1) and the U.S. 
Department of Veterans Affairs (2). The situation is even 
worse in resource-poor areas, where radiology services 
are extremely scarce (3,4). In this light, automated image 
analysis represents an appealing mechanism to improve 
throughput while maintaining, and potentially improving, 
quality of care.

The remarkable success of machine learning techniques 
such as convolutional neural networks (CNNs) for image 
classification tasks makes these algorithms a natural choice 
for automated radiograph analysis (5,6), and they have  

already performed well for tasks such as skeletal bone age 
assessment (7–9), lung nodule classification (10), tuber-
culosis detection (11), high-throughput image retrieval 
(12,13), and evaluation of endotracheal tube positioning 
(14). However, a major challenge when applying such tech-
niques to chest radiography at scale has been the limited 
availability of the large labeled data sets generally required 
to achieve high levels of performance (6). In response, the 
U.S. National Institutes of Health released a public chest 
radiograph database containing 112 120 frontal view im-
ages with noisy multiclass labels extracted from associated 
text reports (15). This study also showed the challenges of 
achieving reliable multiclass thoracic diagnosis prediction 
with chest radiographs (15), potentially limiting the clini-
cal utility of resultant classifiers. Further, this method of 
disease-specific computer-assisted diagnosis may not ulti-
mately be beneficial to the interpreting clinician (16).
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Purpose: To assess the ability of convolutional neural networks (CNNs) to enable high-performance automated binary classifica-
tion of chest radiographs.

Materials and Methods: In a retrospective study, 216 431 frontal chest radiographs obtained between 1998 and 2012 were procured, 
along with associated text reports and a prospective label from the attending radiologist. This data set was used to train CNNs to 
classify chest radiographs as normal or abnormal before evaluation on a held-out set of 533 images hand-labeled by expert radiolo-
gists. The effects of development set size, training set size, initialization strategy, and network architecture on end performance were 
assessed by using standard binary classification metrics; detailed error analysis, including visualization of CNN activations, was also 
performed.

Results: Average area under the receiver operating characteristic curve (AUC) was 0.96 for a CNN trained with 200 000 images. 
This AUC value was greater than that observed when the same model was trained with 2000 images (AUC = 0.84, P , .005) 
but was not significantly different from that observed when the model was trained with 20 000 images (AUC = 0.95, P . .05). 
Averaging the CNN output score with the binary prospective label yielded the best-performing classifier, with an AUC of 0.98  
(P , .005). Analysis of specific radiographs revealed that the model was heavily influenced by clinically relevant spatial regions but 
did not reliably generalize beyond thoracic disease.

Conclusion: CNNs trained with a modestly sized collection of prospectively labeled chest radiographs achieved high diagnostic per-
formance in the classification of chest radiographs as normal or abnormal; this function may be useful for automated prioritization 
of abnormal chest radiographs.
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In this context, we have curated a large clinician-labeled data 
set from our institution to assess the application of CNNs to 
automated classification of chest radiographs as normal or ab-
normal. Our hypotheses are (a) that simplifying the automated 
analysis problem to a binary triage classification task will lead 
to useful performance levels on a clinically relevant task using a 
prospectively labeled data set of a size accessible to many insti-
tutions and (b) that combining clinician judgment with CNN 
output will yield a triage classifier superior to either one alone. 
This work could be clinically important both by permitting ra-
diologists to spend more time on abnormal studies and by dem-
onstrating a simple mechanism to combine physician judgment 
with deep learning algorithms such as CNNs in a manner that 
can improve interpretation performance.

Materials and Methods
Data acquisition and processing in this retrospective study 
were approved by our institutional review board and were com-
pliant with Health Insurance Portability and Accountability  
Act standards. Written informed consent was waived by the 
institutional review board because of the retrospective nature 
of this study, and all images were deidentified.

Data Set and Preprocessing Description
We procured 313 719 chest radiographs obtained at our in-
stitution between January 1, 1998, and December 31, 2012, 
along with the associated text report for each radiographic 
examination. All studies performed during this time were 
given one of six possible summary labels at the time of inter-
pretation by an attending subspecialist radiologist, which were 
binned into “normal” or “abnormal” categories, as described in  
Appendix E1 (online).

After filtering these 313 719 radiographs for single-image 
anteroposterior or posteroanterior studies, 216 431 images re-
mained, with a sex balance of 55% male (118 383 of 216 431) 
and a class balance of 79% abnormal (171 199 of 216 431). 

From this image collection, we randomly sampled 200 000 im-
ages to create a training set of 180 000 images and a development 
set of 20 000 images. Randomly selected subsamples of 1% and 
10% size were created from training and development sets to as-
sess the effect of data set size on end performance.

For final model evaluation, a balanced set of 1000 images 
(500 normal, 500 abnormal) from the 16 431 remaining im-
ages was labeled independently by two general radiologists with 
20 (D.L.R.) and 5 (M.P.L.) years of experience. Each radiolo-
gist was originally supplied with the same set of images (with 
no accompanying prospective labels or reports). The normal and 
abnormal labels created by these two radiologists were then pro-
vided to a third party (J.A.D.), who identified radiographs with 
conflicting labels. Disagreements between the two raters were 
directly adjudicated by consensus, where prospective labels, text 
reports, and each radiologist’s first-round label were withheld 
during adjudication. Once these 1000 images were fully labeled, 
images with true-negative findings (ie, normal images) were re-
moved, such that the class balance of the test set mirrored that of 
the training set. This process, summarized in Figure 1, yielded a 
set of 533 images that were ultimately used for evaluation.

All images underwent histogram equalization (scikit-image, 
version 0.14) for contrast enhancement (17), downsampling to 
a standard 224 3 224 input resolution to enable use of stan-
dard CNN architectures with pretrained weights (torchsample,  
version 0.1.3), and per-sample mean-standard deviation normal-
ization (torchsample, version 0.1.3). Because of the large size of 
the base data set, no data augmentations were applied in our study.

Additional details on data set selection, labeling, and prepro-
cessing can be found in Appendix E1 (online).

Model Architecture and Implementation
We trained several CNN models by using architectures that 
are well known in the literature, such as AlexNet (18), ResNet 
(19), and DenseNet (20), with the goal being to show the 
type of performance that can be achieved by using the cur-
rent standard of off-the-shelf CNN-based image analysis  
algorithms, open-source software, and common hardware (eg, 
one GPU [graphics processing unit]). The standard CNN im-
plementations used in this work are sourced from the torch-
vision (version 0.2.0) package contained within the PyTorch 
software framework (21). Weights for each architecture pre-
trained with the ImageNet database (6) can be found within 
the public repositories for these packages. In our implementa-
tion, the final linear layer of each network is replaced with one 
that reduces final output to one value that is operated on by a 
sigmoid nonlinearity. Exact details and parameters of the CNN 
training procedure (optimizer, batch sizes, preprocessing, etc) 
are provided in Appendix E1 (online).

When evaluating the use of deep learning techniques like 
CNNs that learn their own feature sets from data for a given 
image analysis task, comparison with machine learning methods 
based on predefined feature sets represents a natural baseline. 
Further, such methods can have utility in certain contexts be-
cause they rely on features that can be precomputed and are ame-
nable to robust error analysis techniques. Thus, in this work, we 
also report results for the automated binary triage task obtained 

Abbreviations
AUC = area under the ROC curve, CAM = class activation map,  
CNN = convolutional neural network, ROC = receiver operating 
characteristic

Summary
Convolutional neural networks trained using 20 000 labeled chest 
radiographs show promise for automated classification of chest radio-
graphs as normal or abnormal, potentially enabling triage of studies 
in clinical practice.

Implications for Patient Care
 n Convolutional neural networks (CNNs) yield high performance 

(area under the receiver operating characteristic curve = 0.96) in 
the automated classification of chest radiographs as normal or 
abnormal.

 n An increase in training set size beyond 20 000 prospectively la-
beled chest radiographs, a modest data set size accessible to many 
institutions, yields only marginal benefit.

 n A combination of clinician assessment with CNNs output yields 
the best observed classifier.
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on end performance by using a relatively compute-efficient 
18-layer residual network (ResNet-18) architecture (19). Five-
fold cross-validated binary classification performance for each 
class is reported for all experiments in Table 1. Values other than 
AUC were computed by using an untuned threshold value of 
0.5 on the neural network sigmoid output (a number between 
0 and 1). In practice, this threshold could be tuned on the de-
velopment set to optimize a chosen performance metric for the 
task at hand. Confidence intervals for the AUC values reflected 
that all models trained by using more than 2000 images yield 
AUC values greater than those trained by using 2000 images 
(P , .005). AUC values attained with models trained by using 
200 000 or 20 000 images were not significantly different (P .  
.05). Additionally, outside of the case with 20 000 training 
points and 2000 development points (P , .05), variations in 
the size of the development set or the initialization strategy did 
not result in significantly different (P . .05) AUC values for 
any of the three training set sizes.

Figure 2 shows ROC curves for several pertinent conditions 
from Table 1. Figure 2, A, suggests that while performance across 
the ROC curve is minimally affected by initialization for larger 
data sets, initialization differences can noticeably affect tradeoffs 
between sensitivity and specificity in the high-specificity regi-
men. Figure 2, B, shows more favorable sensitivity and specificity 
tradeoffs throughout the ROC curve when CNN performance 
is evaluated with respect to the expert labels as opposed to the 
original prospective labels recorded by the attending radiologist. 
This phenomenon resulted in AUC values that were five to seven 
points higher when the same CNN predictions were compared 
with the expert labels rather than the prospective labels. Inter-
rater agreement between the expert radiologists (prior to blinded 
consensus) was 0.93, with a Cohen k score of 0.86, while inter-
rater agreement between expert consensus and the prospective 
labels was 0.92, with a Cohen k score of 0.73; this implies that 
the prospective labels contained nontrivial label noise with re-
spect to expert consensus.

We also assessed the effect of changes in CNN architec-
ture and compared CNN performance to that of the bag-of-
visual-words with kernelized support vector machine method 

by using a kernelized support vector machine with bag-of-visual- 
words features, as described by Vedaldi and Zisserman (22) and 
implemented in the open-source VLFeat (version 0.9.18) library 
(23). All model training procedures, which are described in de-
tail in Appendix E1 (online), leverage the analogous VLFeat 
implementations described by Vedaldi and Fulkerson (23) and 
accessed through the Matlab (version R2011; MathWorks, 
Natick, Mass) interface. Note that unlike the CNN models, 
which require high-performance GPU hardware, the kernelized 
support vector machine and bag-of-visual-words features models 
are trained in a comparable amount of time by using a modest 
number of CPU (central processing unit) cores.

Statistical Analysis
Performance was assessed by using the area under the receiver 
operating characteristic curve (AUC) and precision, recall, and 
F1 scores (these metrics are defined in detail in Appendix E1 
[online]). These measurements were computed by using the 
scikit-learn (version 0.19) Python library and were reported for 
the test set in each model. Interrater agreement was assessed with 
the Cohen k statistic and was also computed by using scikit-
learn software. The DeLong nonparametric statistical test (24) 
implemented in the Daim (version 1.1.0) R library was used to 
assess statistical differences among AUC values, wherein P values 
less than .05 were considered to indicate a significant difference. 
The method described by Hanley and McNeil (25) was used to 
compute 95% confidence intervals for AUC values.

To enable accessible analysis of CNN model results, we cre-
ated class activation maps (CAMs) that show the areas of a given 
image that are most responsible for its CNN classification (26). 
The CAMs we used were slightly different from those used by 
Zhou et al (26) because of the sigmoid nonlinearity on the final 
layer; however, they convey similar information about the con-
tribution of a given region to the overall classification.

Results
Our first set of experiments was performed to investigate the ef-
fect of training set size, development set size, and initialization 
strategy (random vs pretrained with the ImageNet database) 

Figure 1: Flowchart of radiographs used in this study. AP = anteroposterior, CXR = chest x-ray, PA = posteroanterior.
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metrics while using the fewest 
parameters, we used this model 
as our classifier of choice in sub-
sequent analyses (20).

In Table 3, we present sum-
mary statistics describing com-
parisons between the following 
sets of labels: (a) DenseNet-121 
(NN) in Table 2, (b) prospec-
tive labels, (c) expert labels, and 
(d) the arithmetic mean of the 
DenseNet-121 score (a number 
between 0 and 1) and the bi-
nary prospective label (0 for nor-
mal, 1 for abnormal) (hereafter, 
NN+PL). The goal of calculating 
this arithmetic mean was to cre-
ate a classifier that combined the 
attending clinician’s prospective 
label and the CNN output in a 
straightforward manner; other 
strategies also could have been 
used. Both NN and NN+PL la-
bels are thresholded at values that 
yield a sensitivity of 98.3% (416 
of 423) for the test set, which 
is the exact value computed for 
prospective labels with respect 
to expert labels; this is equivalent 
to choosing a particular point on 
the ROC curve on which to op-
erate, with sensitivity serving as 
the threshold criterion. Note that 

while the Cohen k statistic was lower (k = 0.64) when com-
paring NN with expert labels than when comparing prospective 
label with expert label (k = 0.73), the value when comparing 
NN+PL with the expert label (k = 0.76) was higher than either 
of these values. Indeed, the combined classifier yielded superior 
performance for all performance metrics shown in Table 3, in-
cluding AUC and specificity. AUC for the NN+PL combined 
classifier was greater than that for the standalone NN classifier, 
with a confidence level of 99% (P , .005).

Comparisons between the ROC curves for the NN+PL and 
NN-type classifiers for each training set size can be found in Figure 3,  
A, while 1000-sample bootstrap frequencies for AUC values ob-
tained from the NN+PL and NN classifiers are shown in Figure 3, 
B. The ROC for NN+PL was superior to that for NN alone at all 
points, and AUC values for a substantial majority of bootstrapped 
populations were greater for NN+PL than for NN alone. NN+PL 
also resulted in a smaller AUC variance than did NN alone.

In Figure 4, we show selected examples of false-positive, false-
negative, true-positive, and true-negative outputs, as determined 
by evaluating the DenseNet-121 classifier against the expert la-
bels. These examples suggest that clinically meaningful spatial 
regions are influencing CNN classification, but they also show 
that it is critical in clinical practice to ensure that such a model 
only be used for the specific task for which it was designed.

of Vedaldi and Zisserman (22), which represents a reasonably 
sophisticated computer vision method based on predefined (cf, 
learned) features. As shown in Table 2, with a size of 200 000 
samples, the best CNN model outperformed the kernelized sup-
port vector machine with the bag-of-visual-words method on 
both F1 score and AUC (P , .05), implying that the learned 
CNN representation may indeed be useful (additional analysis 
in Appendix E1 [online]). Further, use of more sophisticated 
networks requires additional training time; however, it also no-
ticeably affects CNN performance at the 0.5 threshold. When 
we moved from AlexNet (18) to ResNet-18 (19), we observed 
an 11-point improvement in negative class F1, mostly driven 
by higher recall. Similarly, when we moved from ResNet-18 to 
DenseNet-121 (20), we observed a five-point increase in positive 
class recall and a 25-point improvement in negative class preci-
sion, indicating that false-negative findings were reclassified as 
true-positive findings. As shown by Huang et al (20), the dense 
connectivity pattern between feature maps leveraged by the 
DenseNet family of architectures enabled state-of-the-art perfor-
mance for a variety of image recognition tasks while minimizing 
gradient-vanishing concerns, effectively using low-level features, 
and substantially reducing the number of model parameters. 
Given this background and that the DenseNet-121 architecture 
yielded the best observed performance on both classes by most 

Table 1: Performance Metrics for Different Set Sizes and Initializations

Development Size and  
Initialization Method

Test 
Accuracy Precision Recall F1 Score AUC Value

180 000 Training Size

20 000
 ImageNet 0.89 0.99*/0.50 0.88/0.90 0.93/0.64 0.96* (0.94,0.97)
 Random 0.88 0.98/0.52 0.89/0.85 0.93/0.64 0.95 (0.93, 0.97)
2000
 ImageNet 0.89 0.98/0.57 0.90/0.87 0.94*/0.68* 0.96* (0.94, 0.97)
 Random 0.89 0.98/0.51 0.89/0.89 0.93/0.65 0.95 (0.93, 0.97)
200
 ImageNet 0.88 0.93/0.43 0.99*/0.89 0.93/0.58 0.96* (0.94, 0.97)
 Random 0.88 0.98/0.50 0.88/0.89 0.93/0.64 0.96* (0.94, 0.97)

18 000 Training Size
2000
 ImageNet 0.88 0.99*/0.48 0.88/0.90 0.93/0.62 0.94 (0.92, 0.96)
 Random 0.87 0.99*/0.45 0.87/0.89 0.93/0.59 0.95 (0.93, 0.97)
200
 ImageNet 0.85 0.99*/0.29 0.84/0.94* 0.91/0.44 0.94 (0.92,0.96)
 Random 0.86 0.98/0.38 0.86/0.88 0.92/0.51 0.90 (0.87, 0.93)

1800 Training Size
200
 ImageNet 0.84 0.96/0.36 0.85/0.75 0.90/0.46 0.84 (0.80, 0.88)
 Random 0.84 0.99/0.26 0.84/0.88 0.91/0.39 0.85 (0.81,0.89)

Note.—Comparison of performance metrics for different set sizes and initializations for ResNet-18. 
All metrics represent average values over five-fold cross-validation and are computed by using an 
untuned threshold value of 0.5. Data to the left of the virgule are for the abnormal class, and data to 
the right are for the normal class. Key descriptive statistics are total samples (n = 533), true abnormal 
(positive) findings (n = 423), and true normal (negative) findings (n = 110). Data in parentheses are 
95% confidence intervals. AUC = area under the receiver operating characteristic curve.
* Data are best observed values.
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Figure 2: Effect of, A, initialization (PR = pretrained, SC = random) and, B, evaluation standard (EL = expert label, PL = prospective 
label recorded by one attending radiologist) on receiver operating characteristic (ROC) curves for different training set sizes. Each 
ROC curve shows the output of a one representative ResNet-18 model. Data set size (K = 1000 points) refers to total size (training + 
development, 90-to-10 split). AUC = area under the ROC curve.

Table 2: Performance Metrics for Different Model Classes

Model Class Training Time (h) Test Accuracy Precision Recall F1 Score AUC Value
KSVM+BOVW* 4.5 0.88 0.89/0.86† 0.98†/0.52 0.93/0.65 0.93 (0.90, 0.95)
AlexNet 0.75 0.87 0.98†/0.43 0.87/0.88† 0.92/0.57 0.95 (0.92, 0.96)
ResNet-18 1.5 0.89 0.98†/0.57 0.90/0.87 0.94†/0.68 0.96† (0.94, 0.97)
DenseNet-121 6 0.91† 0.93/0.82 0.95/0.75 0.94†/0.78† 0.96† (0.94, 0.97)

Note.—Comparison of performance metrics for different model classes with a training size of 180 000 samples, a development size of 2000 
samples, and pretrained initialization for convolutional neural networks (CNNs). All metrics represent average values over five trials with 
different random seeds, and CNN metrics are computed by using an untuned threshold value of 0.5. Data to the left of the virgule are 
for the abnormal class, and data to the right are for the normal class. Key descriptive statistics are total samples (n = 533), true abnormal 
(positive) findings (n = 423), and true normal (negative) findings (n = 110). DenseNet-121 area under the receiver operating characteristic 
curve (AUC) is not significantly different from that for ResNet-18 (P . .05); however, it is significantly different from that for AlexNet and 
kernelized support vector machine with bag-of-visual-words (KSVM+BOVW) features (P , .05). Data in parentheses are 95% confidence 
intervals.
* KSVM+BOVW model was trained on four CPUs, while other models were trained on a Tesla P100 GPU [graphics processing unit]. 
† Data are best observed values.

Discussion
Our results support several important observations regard-
ing the use of CNNs for automated binary triage of chest 
radiographs, which to our knowledge has not been attempted 
at a comparable scale. For instance, we have shown that while 
carefully adjudicated image labels are necessary for evalua-
tion purposes, prospectively labeled single-annotator data sets 
of a scale modest enough (approximately 20 000 samples) to 
be available to many institutions are sufficient to train high-
performance classifiers for this task. These scalability results 
are in line with those of Gulshan et al (27), who found that 
CNN performance for classification of retinal fundus photo-
graphs reached a plateau after approximately 60 000 images. 
Furthermore, we observed that quantitative combination of 
the CNN score and clinician binary labels results in a tunable 
classifier that performs more similarly to expert radiologists, 
as measured with both AUC and Cohen k values, than does 
either the CNN or the clinician alone.

Our study showed the utility of noisier (or “weaker”) 
sources of supervision in radiologic classification tasks. 

Specifically, CNNs in our study are trained by using a large 
prospectively labeled data set that contains label noise that 
results not only from occasional disagreement between the 
attending physician and expert consensus, but also from a 
variety of factors that affect clinical practice, such as erro-
neous prospective label entry (which would not affect triage 
outcome), inconsistent application of the prospective label 
protocol across more than 30 faculty members in six subspe-
cialty divisions in the department over nearly 15 years, and 
clinician use of information not contained within the image. 
Although CNNs were trained with this noisier data set, CNN 
model results show more similarity with expert labelers than 
with noisier prospective labels, as measured with both AUC 
and k statistics. These trends align with those described in 
the growing literature on weak supervision, which has shown 
that end-model performance can asymptotically improve 
with data set size, even when noisy sources of supervision are 
used (28,29). Ultimately, the fact that larger noisier label sets 
can be used to train models that perform well when evaluated 
against expert assessments could enable the creation of useful 
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majority of model errors and consisted of 24% borderline 
cases; 27% containing support devices, such as feeding tubes; 
21% misclassified normal examinations; and 28% miscel-
laneous mild conditions (eg, shoulder arthritis) not deemed 
abnormal for thoracic disease by the expert panel.

Further, the attending physician noted mild cardiomeg-
aly in the false-negative example shown in Figure 4c. Here, 
the model was correctly influenced by the lower left cardiac 
region, and the relatively high CNN score for this negative 
example (0.48) indicated that both the CNN and the physi-
cian evaluated this study as borderline abnormal. Finally, the 
true-negative image shown in Figure 4d is a particularly good 
example of how interpretation of model output must be per-
formed in an appropriate context. Although both the model 
and the expert labelers indicated no thoracic disease, the clin-
ical report described and the image showed bilateral proxi-

mal transverse humeral 
metaphyseal fractures, 
which represent a serious 
clinical condition. Given 
that humeral fractures are 
rare on chest radiographs, 
it is not surprising that 
the CNN would not rec-
ognize this injury. Thus, 
while the CAMs provide 
compelling evidence that 
CNN classification is 
most heavily influenced 
by clinically relevant 
spatial regions, they also 
show that these models 
will not necessarily gener-
alize beyond the thoracic 
triage task for which they 

machine learning models from existing data for a variety of 
medical use cases. As expected, model evaluation against 
noisier prospective labels rather than against expert-provided 
labels led to lower computed performance metrics, emphasiz-
ing the need for confident labels for model assessment.

Qualitative evaluation of model behavior via the paired 
images and CAMs in Figure 4, along with associated text re-
ports, also yields useful insight into both success and failure 
modes of these models. In the true-positive example shown in 
Figure 4a, the CNN is correctly influenced by pixels covering 
the collapsed right lung. The false-positive example shown in 
Figure 4b is interesting because the patient’s necklace, which 
represents an uncommon thin high-attenuation object, seems 
to contribute substantially to the positive rating; this case is 
indicative of the wide variety of error modes that can occur 
in this task. Note that false-positive findings made up the 

Table 3: Comparison of Different Label Sources

Statistic NN vs PL NN vs EL PL vs EL NN+PL vs EL
Accuracy at sensitivity (PL) 0.88 0.90 0.92 0.93*
AUC 0.90 0.96 … 0.98†

Cohen k at sensitivity (PL) 0.51 0.64 0.73 0.76*
Specificity at sensitivity (PL) 0.39 0.60 0.69 0.74*
FN at sensitivity (PL) … 7* 7* 7*
FP at sensitivity (PL) … 47 36 32*

Note.—Comparison of different label sources: DenseNet-121 (NN; 180 000-sample training set, 
2000-sample development set; pretrained initialization), prospective labels (PLs), expert labels (ELs), and 
mean of PL labels and NN scores (NN+PL). For NN and NN+PL, the classification threshold is set such 
that the sensitivity and number of false-negative (FN) findings are constant at the same value observed for 
PL (all with respect to EL). For the same number of false-negative findings on the test set (seven studies), 
NN+PL results in four fewer false-positive (FP) results than does PL. Key descriptive statistics are total 
samples (n = 533), true abnormal (positive) findings (n = 423), and true normal (negative) findings (n = 
110). AUC = area under the receiver operating characteristics curve.
* Best observed values.
† Data are significantly different from those acquired with the next-best model (P , .05).

Figure 3: Comparison of, A, receiver operating characteristic (ROC) curves for DenseNet-121 (NN) and NN+PL (mean of NN 
score and prospective label [PL] score) classifiers and, B, area under the ROC curve (AUC) histograms obtained from a 1000-sample 
test set by using the bootstrap method. Each ROC curve represents the output of one representative NN model. In B, solid lines indi-
cate mean values, and dashed lines indicate standard deviation from the mean. Data set size (K = 1000 points) refers to total size 
(training + development, 90-to-10 split).
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for them to provide practical utility. Finally, we noted that 
images were downsampled to 224 3 224 pixels to assess the 
performance of standard pretrained CNNs from computer 
vision for this radiograph classification task; future work 
should address the utility of domain-specific CNN archi-
tectures that could leverage additional information in the 
high-resolution image.

In conclusion, we found that CNNs trained by using a mod-
estly sized corpus of prospectively labeled chest radiographs show 
promise in performing automated chest radiograph triage at 
levels that may be useful in clinical practice, attaining AUC values 
of up to 0.96 with respect to expert labels. Such a system could 
provide value in many clinical contexts, including workflow pri-
oritization in undersourced clinics and automated triage in areas 
without access to trained radiologists. Further, the fact that the 
tradeoff between classifier sensitivity and specificity is more fa-
vorable at every possible operating point when the output of the 
CNN is averaged with the prospective label suggests that even rel-
atively simple combined human and artificial intelligence systems 
could improve performance for real-world radiologic interpreta-
tion tasks. The results of our study should be validated in other 
patient populations; however, our findings suggest a distinct value 
to combining deep-learning techniques, such as CNNs, with data 
sets of sizes already accessible to many institutions to improve tho-
racic imaging triage.

were trained. Additional examples for each success and failure 
mode can be found in Appendix E1 (online).

Our study had several limitations. First, model perfor-
mance is better for the abnormal class than for the normal 
class, even when trained with data sets balanced by under-
sampling. This implies that the task of identifying the ab-
sence of disease or injury can be difficult, as expected. Fur-
ther, absolute performance could potentially be improved 
by additional architecture and hyperparameter searches, 
threshold tuning, model ensembling, or data augmentation. 
We did not emphasize these well-known techniques in our 
study; instead, we focused on demonstrating viability and 
assessing trends rather than on optimizing end performance. 
Additionally, given that our data for both training and test-
ing were sourced from the same institution, it remains an 
open question as to whether the models presented here can 
be generalized to data from other institutions, which may 
have different data preparation techniques or population 
statistics that could lead to higher error rates (30). Our re-
sults, however, suggest that only moderately large numbers 
of images (on the order of tens of thousands) are needed to 
train institution-specific models that have clinically useful 
performance. Indeed, the ability of CNN-based architec-
tures to interpolate the data, rather than to learn features 
that can be generalized to other data sets, may be sufficient 

Figure 4: High-resolution histogram-equalized images (left) and normalized class activation maps (CAMs) (224 3 224 resolution) (right) show 
(a) true-positive (decreased right lung volume; convolutional neural network [CNN] score 0.99), (b) false-positive (necklace; CNN score 0.57), 
(c) false-negative (borderline cardiomegaly; CNN score 0.48), and (d) true-negative (humerus fracture; CNN score 0.41) findings of thoracic dis-
ease. Red indicates areas of relatively high contribution to an abnormal score, while blue areas indicate the opposite. Because color information is 
normalized within each image, comparison of values across CAMs is not appropriate.
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