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A B S T R A C T   

Purpose: To compare machine learning methods for classifying mass lesions on mammography images that use 
predefined image features computed over lesion segmentations to those that leverage segmentation-free repre
sentation learning on a standard, public evaluation dataset. 
Methods: We apply several classification algorithms to the public Curated Breast Imaging Subset of the Digital 
Database for Screening Mammography (CBIS-DDSM), in which each image contains a mass lesion. Segmentation- 
free representation learning techniques for classifying lesions as benign or malignant include both a Bag-of- 
Visual-Words (BoVW) method and a Convolutional Neural Network (CNN). We compare classification perfor
mance of these techniques to that obtained using two different segmentation-dependent approaches from the 
literature that rely on specific combinations of end classifiers (e.g. linear discriminant analysis, neural networks) 
and predefined features computed over the lesion segmentation (e.g. spiculation measure, morphological 
characteristics, intensity metrics). 
Results: We report area under the receiver operating characteristic curve (AZ) values for malignancy classification 
on CBIS-DDSM for each technique. We find average AZ values of 0.73 for a segmentation-free BoVW method, 
0.86 for a segmentation-free CNN method, 0.75 for a segmentation-dependent linear discriminant analysis of 
Rubber-Band Straightening Transform features, and 0.58 for a hybrid rule-based neural network classification 
using a small number of hand-designed features. 
Conclusions: We find that malignancy classification performance on the CBIS-DDSM dataset using segmentation- 
free BoVW features is comparable to that of the best segmentation-dependent methods we study, but also observe 
that a common segmentation-free CNN model substantially and significantly outperforms each of these (p <
0.05). These results reinforce recent findings suggesting that representation learning techniques such as BoVW 
and CNNs are advantageous for mammogram analysis because they do not require lesion segmentation, the 
quality and specific characteristics of which can vary substantially across datasets. We further observe that 
segmentation-dependent methods achieve performance levels on CBIS-DDSM inferior to those achieved on the 
original evaluation datasets reported in the literature. Each of these findings reinforces the need for standardi
zation of datasets, segmentation techniques, and model implementations in performance assessments of auto
mated classifiers for medical imaging.   
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1. Introduction 

Breast cancer is the most deadly cancer for women in developing 
countries and the second most deadly cancer for those in developed 
nations [1]. Mammograms are an essential component in early detection 
of breast cancer, and interpretation sensitivity greatly affects patient 
survival rates [2]. On the other hand, imperfect specificity of breast 
lesion diagnosis by mammography causes physical and psychological 
discomfort to false positive patients who are subjected to further, 
possibly invasive tests [3,4]. As a result, a variety of Computer Aided 
Diagnosis (CADx) systems designed to provide quantitative, objective 
mass classification have been developed [5]. 

Existing CADx techniques for mass classification generally fall into 
two categories: segmentation-dependent methods, which require a 
detailed outline of the lesion upon which to compute features for clas
sification, and segmentation-free methods, which do not. Segmentation- 
dependent methods tend to rely on predefined sets of features, while 
segmentation-free approaches leverage representation learning tech
niques to learn explanatory features directly from the available data. 
Segmentation-free approaches could provide substantial value in clin
ical practice by obviating the need for detailed segmentations, but have 
only recently been able to achieve results similar to those of 
segmentation-dependent methods [6–9]. Though recent studies of 
segmentation-free approaches have shown promising results, CADx 
systems for mass classification have rarely been evaluated on the same 
datasets, making the type of comparative performance analysis that 
should precede clinical deployment difficult to perform [8]. Major 
limitations to the evaluation of different mammography CADx systems 
on common datasets have ranged from insufficient descriptions of model 
implementation in the original literature to challenges with data avail
ability and provenance. 

In this work, we leverage the recent Curated Breast Imaging Subset of 
the Digital Database for Screening Mammography (CBIS-DDSM) to 
compare segmentation-free and segmentation-dependent approaches to 
automated mass classification on a standard, public dataset. To perform 
this comparison, we implement four different techniques from the 
literature: a segmentation-free Bag-of-Visual-Words (BoVW) mass clas
sification algorithm inspired by traditional computer vision [10], a 
segmentation-free Convolutional Neural Network (CNN) trained using 
commodity deep learning software [11], a segmentation-dependent al
gorithm based on the Rubber-Band Straightening Transform (RBST) of 
Sahiner et al. [6], and the segmentation-dependent approach of Huo 
et al. that combines predefined features with an artificial neural network 
[7]. Evaluating the performance of each of these techniques on the CBIS- 
DDSM test set after training and tuning was performed using the stan
dard CBIS-DDSM training set yields several useful conclusions. First, we 
observe that malignancy classification performance on the CBIS-DDSM 
dataset obtained using the segmentation-free BoVW method is compa
rable to that of the best segmentation-dependent methods, but also find 
that the segmentation-free CNN model substantially and significantly (p 
< 0.05) outperforms each of these by 11 points of area under the 
receiver operating characteristic curve (AZ). These results reinforce 
recent findings suggesting that representation learning techniques such 
as BoVW and CNN can obviate the need for precise or method-specific 
lesion segmentation while maintaining high levels of performance. 
Second, we find that our re-implementations of existing segmentation- 
free methods yield performance levels on CBIS-DDSM inferior to those 
achieved on the original evaluation datasets reported in the literature. 
We propose that these discrepancies result from some combination of 
differences in the segmentation techniques used, parameter tuning on 
small datasets in the original work, and implementation choices. 

2. Background and related work 

Due to the importance of characteristics of the lesion margin in 
differentiating benign and malignant tumors, many existing CADx 

methods have been based on obtaining mathematical descriptions of the 
tumor outline [7,12–20]. Such segmentation-dependent techniques 
require accurate segmentation of the lesion margin in order to extract 
image features. Methods that require hand-drawn segmentation of le
sions, a process not usually performed in clinical practice, can make 
resultant CADx systems inefficient for clinical use. CADx systems uti
lizing automated lesion segmentation have, however, been studied with 
promising results. For example, Mudigonda et al. obtained an AZ of 0.85 
for binary classification of breast masses using hand-drawn Regions-of- 
Interest (ROIs) as a basis for their automated segmentation method [13]. 
Likewise, Sahiner et al. [14] and Huo et al. [7] developed CADx systems 
using segmentation methods requiring only a general bounded region 
identified by the radiologist and achieved AZ results of 0.91 and 0.94, 
respectively. An extensive analysis of existing methods for automated 
mass segmentation methods that support segmentation-dependent 
CADx can be found in the review of Oliver et al. [21]. 

More recent segmentation-free CADx approaches have attempted to 
attain high levels of diagnostic performance without any lesion seg
mentation requirements. For instance, multiple workers such as 
Jamieson et al. [22] (AZ = 0.71), Liu and Jiang [23] (AZ = 0.72), and Li 
et al. [24] (AZ = 0.796) have demonstrated the promise of segmentation- 
free algorithms, most of which have been based on various types of 
learned features. A particularly large body of work has arisen that ap
plies deep learning algorithms such as Convolutional Neural Networks 
(CNNs) to automated mass analysis. The recent review of deep learning 
techniques in mammography by Hamidinekoo et al. found that nine 
major mass classification studies performed between 1996 and 2017 
using deep learning approaches yielded AZ values between 0.71 and 
0.97 [9]. However, because each of these studies used different datasets, 
several of which are not public, it is difficult to fairly compare the per
formance of these different algorithms. 

The focus of this work is on analyzing the performance of multiple 
different techniques on the relatively recent CBIS-DDSM dataset. We 
leverage this dataset because it (a) is provided with standard train/ 
validation splits (b) contains cases verified by pathology (c) contains 
images curated by expert mammographers from multiple institutions 
and (d) contains a large amount of data in addition to the raw images – e. 
g. lesion segmentation, Breast Imaging Reporting And Data System (BI- 
RADS) descriptors, BI-RADS abnormality ratings, and severity ratings – 
that make it amenable to analysis via a wide variety of machine learning 
approaches. Note that BI-RADS describes both a classification system 
and lexicon for reporting breast imaging results that includes both de
scriptors of imaging features that were shown to correlate with high 
predictive values associated with either benign or malignant disease, 
and a classification system to describe the likelihood that the imaging 
findings represent malignancy [25]. 

For the sake of completeness, we provide additional background on 
recent work in mass classification and the datasets on which these 
studies were evaluated here. Wang et al. extracted five manually- 
designed image features and applied logistic regression for classifica
tion, achieving AZ of 0.806 ± 0.025 on an internal dataset [26]. Zhu 
et al. developed a deep multi-instance network and achieved AZ of 0.859 
± 0.03 on the public INbreast dataset [27]. Arevalo et al. used a com
bination of CNN-extracted features and hand-crafted features and ob
tained AZ of 0.826 on the public BCDR-FM dataset [28]. Kim et al. 
applied ResNet to a large-scale mammography dataset from 5 in
stitutions, and achieved AZ of 0.906 [29]. Ribli et al. applied Faster R- 
CNN to the INbreast database, which achieved AZ of 0.95 [30]. Al-masni 
et al. applied a YOLO model for this task and achieved 5-fold cross- 
validation AZ of 0.965 on a subset of the DDSM dataset [31]. Lotter 
et al. developed a curriculum training method with a multi-scale CNN 
and obtained 0.901 ± 0.031 on a subset of DDSM; these authors also 
note that “as full image mammogram classification lacks standardized 
evaluation framework, it is somewhat difficult to directly compare our 
results to other work.” [32]. In other words, because most studies are 
evaluated on different, incompletely reported, or private datasets, it is 
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difficult even for researchers in the field to understand how the per
formance of their methods compares to that reported by other work. 
Ting et al. used hierarchical features from a CNN and achieved AUC 
0.92 ± 0.02 on a subset of DDSM [33]. Chougrad et al. applied various 
CNNs including VGG, ResNet-50 and Inception networks, and achieved 
AZ of 0.99 on the MIAS dataset and 0.98 on a subset of the DDSM dataset 
[34]. 

Many studies have also used the CBIS-DDSM dataset we leverage 
here, albeit in slightly different ways. Ragab et al. [35] and Li et al. [36] 
applied convolutional neural networks on segmented ROIs, and ach
ieved AZ of 0.94 and 0.85 on CBIS-DDSM respectively. Tsochatzidis et al. 
examined multiple popular CNNs, and achieved AZ of 0.859 and 0.804 
on DDSM-400 and CBIS-DDSM, respectively [37]. Chougrad et al. pro
posed a multi-label classification setting and fine-tuned a pre-trained 
CNN, achieving mean AZ of 0.89 ± 0.08 for 5-fold cross-validation on 
CBIS-DDSM [38]. Chen et al. [39] and Falconi et al. [40] fine-tuned 
CNNs and achieved AZ of 0.86 and 0.844 on CBIS-DDSM respectively. 
Alkhaleefah et al. fine-tuned VGG-19 and applied data augmentation 
techniques on their own data splits of CBIS-DDSM, and achieved AZ of 
0.961 [41]. Shu et al. proposed different pooling structures for CNNs and 
obtained AZ of 0.838 ± 0.0001 on CBIS-DDSM [42]. Samala et al. aimed 
to assess the generalization errors of CNNs, and found AZ of 0.83 ± 0.03 
on internal and CBIS-DDSM combined data [43]. Gossmann et al. 
investigated the performance deterioration of deep neural networks for 
lesion classification due to distribution shift, and achieved AZ of 0.833 
on CBIS-DDSM [44]. Beltran-Perez et al. developed a three-step pipeline 
to extract image features using a multiscale generalized radial basis 
function and the discrete cosine transform, and achieved 93.99% ac
curacy on CBIS-DDSM [45]. Ansar et al. applied transfer learning of 
MobileNet and obtained 74.5% accuracy on CBIS-DDSM [46]. De 
Vriendt et al. proposed an all-in-one graph-based deep semi-supervised 
learning framework, and obtained AZ of 0.811 with only 40% of the 
labeled data on CBIS-DDSM [47]. 

A small number of existing studies compare multiple computer 
assisted detection or diagnosis techniques on the same datasets. The 
work of Oliver et al. implements multiple approaches for mass detection 
techniques on a single dataset, but does not address mass classification 
[21]. The recent work of Kooi et al. compares a CNN-based approach to a 
single reference system based on extracted features, but does so on a 
non-public dataset [8]. They find that the segmentation-free CNN 
approach (AZ = 0.93) slightly outperforms their segmentation- 
dependent, feature-based method (AZ = 0.91). 

3. Materials and methods 

In order to compare multiple segmentation-free representation 
learning approaches to several segmentation-dependent predefined 
feature methods using a standard, public dataset, we implemented four 
high-performing methods from the literature that are both trained and 
evaluated using standard splits from the CBIS-DDSM mass classification 
dataset [48]. Segmentation-free techniques analyzed include both a 
BoVW approach adapted from traditional computer vision as well as a 
standard CNN-based approach from the field of deep learning [10,11]. 
Segmentation-dependent techniques analyzed include two high- 
performing approaches from the literature: linear discriminant anal
ysis of features computed on the lesion margin as described by Sahiner 
et al. [6] and hybrid rule-based neural network classification of a small 
number of salient features as described by Huo et al. [7] We obtained 
existing code for each technique where possible, and re-implemented 
the remainder as faithfully as possible following descriptions in the 
literature; specific implementation decisions are described in detail 
below. We note that it was not possible to obtain code for the exact 
methods for lesion segmentation implemented in previous studies, and 
we therefore use the segmentations provided as part of the public CBIS- 
DDSM dataset. The technique used by Lee et al. [49] to compute these 
segmentations was based on the Chan-Vese local level set framework 

[50], where the coarse annotation from the original DDSM dataset was 
used for initialization. The process of computing and validating these 
segmentations is described in detail by Lee et al. [49] We describe each 
method implemented for this study in detail below; implementations are 
built using MATLAB (v. R2011) and Python 3.6 unless otherwise noted. 
Note that each method uses only the mammogram image, and no other 
descriptors included in the CBIS-DDSM dataset. 

3.1. Segmentation-Free representation learning methods 

Each of the segmentation-free methods described below relies on 
classification of a set of features learned directly from training data, and 
does not require lesion segmentation. 

3.1.1. Bag-of-visual words 
Fig. 1 outlines the procedure for the BoVW method. Each image was 

first preprocessed using the method developed by Chan et al., which 
involves filtering a bounded portion of the image around the ROI in 
order to smooth out structures in the background tissue that may 
obscure the mass margin [14,51]. Fig. 2 shows an example of an ROI 
before and after this preprocessing. We then utilize the Scale-Invariant 
Feature Transform (SIFT) to compute the primitive feature set on 
which our BoVW method is based using a bounding box around the 
entire ROI; all SIFT features were computed using the VLFeat open 
source library in MATLAB (v. R2011) [52]. Subsequent image classifi
cation is based on a feature histogram created by counting the number of 
image patches assigned to each individual visual word by a consensus 
clustering approach described in detail in the Supplementary Material. 
Finally, we train an L1-regularized logistic regression classifier, also 
known as Least Absolute Shrinkage and Selection Operator (LASSO), 
utilizing the glmnet (v. 2.0–16) software package[53]. Hyper
parameters, such as the number of clusterings upon which to evaluate 
consensus clustering and the regularization parameter for LASSO, were 
tuned using 20% of the training data as a held-out validation set. 

3.1.2. Convolutional neural network 
We evaluate the performance of a standard Convolutional Neural 

Network (CNN) architecture implemented using the Keras (v. 2.2.0) 
Python software package with a Tensorflow backend [54–56]. Due to its 
superior performance on a variety of image classification tasks both 
inside and outside of medicine, we utilize a 121-layer Densely Con
nected CNN (DenseNet-121) of Huang et al. for this comparison 
[11,57,58]. The DenseNet-121 model was trained on a random 90% 
sample of the DDSM-CBIS training set and validated on the remaining 

Fig. 1. Flowchart of a Bag-of-Visual-Words (BoVW) method, which relies on 
sequential steps including image processing, feature extraction, formation of 
visual words dictionary, and ultimate classification. 
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10% for 100 epochs using a single Tesla P100 GPU with a batch size of 
32 images, a dropout rate of 0.2, a learning rate of 0.001, and the Adam 
optimizer. Hyperparameter values were determined using coarse grid 
search in the vicinity of default parameters. The network was initialized 
using weights from a model pre-trained on the ImageNet dataset, all 
parameters were assumed learnable, and the learning rate was 
decreased by a factor of 

̅̅̅̅̅̅̅
0.1

√
when validation accuracy had not 

increased for more than 10 epochs [57]. All images were mean- 
standard-deviation-normalized, cropped to 750 × 750 pixels around 
the segmentation centroid, and further downsampled to 224 × 224 
pixels before entering into the CNN. Data augmentation was achieved 
via random application of mild zooms (in the range of [0.8, 1.2]), hor
izontal flips, and random rotations. While such augmentations are 
important in most state-of-the art image classification results, note that 
due to the physical particulars of mammography, augmentations such as 
contrast and brightness enhancements were specifically not applied 
[59]. 

3.2. Segmentation-dependent predefined feature methods 

Each of the segmentation-dependent methods described below is 
drawn from the CADx literature, and relies on classification of a set of 
features defined a priori over a provided lesion segmentation. 

3.2.1. Linear discriminant analysis of Rubber-Band Straightening 
Transform features (LDA-RBST) 

The CADx system of Sahiner et al. relies on linear discriminant 
analysis performed on a variety of predefined features, including those 
derived using the Rubber-Band Straightening Transform (RBST) for 
which Sahiner has generously provided the code [6]. The RBST converts 
the margin of the image into a straight line as shown in Fig. 3, and is 
accomplished by determining the normal direction to each ROI edge 
pixel and taking 40 pixels along that direction to compose each line of 
the RBST. Several texture features were computed from the RBST image, 
including features from the gray-level co-occurrence matrix (GLCM) at 
ten pixel differences (d = 1,2,3,4,6,8,10,12,16,20) and four directions 
(θ = 0◦

,45◦

,90◦

,135◦ ) as well as run-length statistics (RLS) features in 
four directions (θ = 0◦

, 45◦

, 90◦

, 135◦ ). Additionally, various morpho
logical features were obtained from the original ROI image. Each set of 
features is listed in Table 1. 

Fig. 2. Example of a Region-of-Interest (ROI) before (a) and after (b) preprocessing for the Bag-of-Visual-Words (BoVW) classifier.  

Fig. 3. Example Region-of-Interest (ROI) and resulting Rubber-Band Straight
ening Transform (RBST) image. 

Table 1 
List of features employed by method of Sahiner et al.  

Morphological GLCM RLS 

Fourier descriptor Difference average Long run emphasis 
Convexity Difference entropy Run percentage 
Rectangularity Inverse difference moment Gray level non-uniformity 
Perimeter Difference variance Run length non- 

uniformity 
NRL mean Inertia Short run emphasis 
Contrast Correlation  
NRL entropy Inf. Measure of correlation 

1  
Circularity Inf. Measure of correlation 

2  
NRL area ratio Energy  
NRL standard deviation Entropy  
NRL zero-crossing 

count 
Sum variance  

Perimeter-to-area ratio Sum entropy  
Area Sum average   
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3.2.2. Neural Network Classification of Hand-Designed Features (NN- 
HDF) 

Finally, we re-implemented the feature extraction method from Huo 
et al. that supports a hybrid rule-based neural network classifier [7]. 
Five features were included in this method: spiculation measure, 
sharpness, average gray level, contrast, and texture. The spiculation 
measure was the key feature for the original work of Huo et al. [7]. It is 
found using radial edge gradient analysis over the four different 
neighborhoods shown in Fig. 4, where Sobel filters were used to obtain 
the gradient magnitude and orientation of the ROI [60]. The orientation 
was then normalized based on the radial direction, and a gradient- 
magnitude-weighted histogram of the normalized orientation was 
found. The spiculation measure is the Full-Width at Half Maximum 
(FWHM) of this histogram. As Huo et al. do not describe the exact 
method for determining the FWHM required for their method, we utilize 
the following straightforward computation. We first smooth the histo
gram with an averaging filter of length two. We then find the first and 
last bins at which the histogram exceeded the half maximum. Finally, we 
use linear interpolation to determine the exact bin position and convert 
to degrees. We use 24 bins, allowing for a bin size of 15◦ as in the 
original paper. We note here that Huo et al. report that only an 
approximately correct outline of the mass lesion was required for the 
purposes of this analysis. 

3.3. Evaluation 

Each method was trained (where appropriate) and tested using the 
CBIS-DDSM data set with the provided train and test splits [48]. The 
data set includes 691 training cases (355 benign, 336 malignant) and 
200 test cases (117 benign, 83 malignant). We assess the performance of 
each method by analyzing AZ values and associated 95% confidence 
intervals [61]. 

3.4. Statistical techniques 

Model performance was assessed using AZ on a held-out test set, 
computed using either the scikit-learn (v 0.19) Python library or MAT
LAB (v. R2011). A statistical test of non-inferiority implemented in the 
rocNIT (v. 1.0) R library was used to compare different classifiers 
characterized by similar performance levels. The method of Hanley and 
McNeil was used to compute 95% confidence intervals on AZ values, and 
p-values less than 0.05 were considered statistically significant 
throughout the analysis [62]. Statistical computations performed by J.A. 
D., A.H., and R.S.L.. 

4. Results 

Table 2 contains the results for each method described above on 

Fig. 4. Neighborhoods used in NN-HDF method (excluded areas in black). Panel (a) represents the segmented mass, panel (b) represents the mass margin, panel (c) 
represents the mass plus the surrounding periphery, and panel (d) represents the surrounding periphery. 

R. Sawyer Lee et al.                                                                                                                                                                                                                            



Journal of Biomedical Informatics 113 (2021) 103656

6

CBIS-DDSM. Most noticeably, the CNN substantially and significantly 
outperforms all other approaches with an AZ of 0.86 [0.83, 0.89] (p <
0.05); note that these results are on par with the best segmentation-free 
results of which we are aware on the standard CBIS-DDSM dataset. 
Amongst the remaining methods, the LDA-RBST technique of Sahiner 
et al. yielded the best classification performance results with an AZ of 
0.75 [0.69, 0.81], followed closely by the BoVW method with an AZ of 
0.73 [0.66, 0.79]. A non-inferiority test performed on the results from 
these two techniques results in a p-value of 0.01 for a δ of 0.15 and an α 
of 0.05, demonstrating significant non-inferiority of the BoVW method 
with respect to that LDA-RBST [63]. The NN-HDF method performed 
significantly worse than all other methods on CBIS-DDSM, with an AZ 
value of 0.58 [0.51, 0.65] (p < 0.05). We present additional results 
specific to each technique in detail below. 

4.1. Segmentation-free representation learning methods 

4.1.1. Bag-of-visual-words 
As described in the Supplementary Material [65–68], the BoVW 

method requires parameter optimization with respect to the number of 
clusterings used in consensus clustering and the regularization param
eter in LASSO. Based on the empirical findings shown in Fig. 5, we chose 
10 clusterings and a regularization parameter value of 0.014. With these 
optimized parameters, we achieved AZ of 0.73 using the BoVW method. 

4.1.2. Convolutional neural network 
The fundamental difference between the DenseNet-121 deep 

learning approach and other methods in this paper is the fact that deep 
neural networks are able to learn their own feature maps in a manner 
that best explains the data available. Thus, the trained neural network is 
itself a feature extractor, and the combination of a fully connected linear 
layer and a softmax operator is responsible for classification. Performing 
the training procedure described above with ten different random seeds 
yielded best-case test set AZ of 0.88 [0.85, 0.90], worst-case test set AZ of 
0.85 [0.82, 0.89], and median AZ of 0.86 [0.83 0.89], which represents 
the best performance of any method described in this manuscript. 

In order to ensure that this classification performance is not caused 
by anomalies within the data or training process, we compute class 
activation maps (CAMs) to assess whether the CNN classifications are 
leveraging appropriate spatial regions of the image [64]. Pertinent 

visualizations can be found in Fig. 6, where we observe that correct 
classifications result when the network activations are directly over the 
lesion, while errors in both directions occur when weights for the correct 
class are high in spatial areas outside of the mass itself. 

4.2. Segmentation-dependent predefined feature methods 

4.2.1. Linear discriminant analysis of rubber-band straightening transform 
features 

Our analysis is similar to that of Sahiner et al. [6], where we choose 
the top ten features from morphological and texture features separately 
as well as together for use in linear discriminant analysis. Feature se
lection was accomplished using Wilks’ lambda. The resulting AZ from 
each of these scenarios was 0.62, 0.70, and 0.75, respectively. Table 3 
lists the top ten features found for each category. Note that Sahiner et al. 
[6] specifically mention that they expect the selected features to change 
based on the particular training dataset used, so our procedure repre
sents an intended implementation of this technique. 

4.2.2. Neural network classification of hand-designed features 
Huo et al. developed a hybrid rules-based neural network classifier in 

their work [7]. The rule pertains to the spiculation measure, automati
cally concluding that any mass with a spiculation measure higher than 
160◦ was malignant, and using the rest of the features as input to a 
neural network to determine the malignancy of the lesions with lower 
spiculation measure. The results of our re-implementation of this 
method evaluated on CBIS-DDSM are shown per feature in Table 4 along 
with the results reported by Huo et al. on their original dataset. The 
resulting AZ for the hybrid classifier using the 160◦ threshold was 0.51. 
With a threshold of 320◦ optimized for our dataset, the AZ was 0.58. 

5. Discussion 

Our analysis supports several distinct conclusions. First, we find that 
the two segmentation-free methods are able to classify benign vs. ma
lignant masses as well as or better than segmentation-based methods 
that use predefined features. In particular, while BoVW performs simi
larly to the best predefined feature method, the deep learning method 
(AZ = 0.86) improves AZ by 11 points over the best competing 
segmentation-based method (AZ = 0.75). These results support the 
conclusion that the two segmentation-free mass classification methods 
that leverage representation learning, BoVW and CNN, can obviate the 
need for accurate segmentations while improving performance with 
respect to traditional segmentation-based CADx methods that use pre
defined features. While our observation that segmentation-free deep 
learning models can outperform segmentation-based models is consis
tent with expectations of previous work [8], our study is the first to 
demonstrate this across multiple different techniques on a standard, 
public mammography dataset. A robust finding that mammography 

Table 2 
Results for different classification methods on CBIS-DDSM dataset.  

Method AZ [95% Confidence Interval] 

BoVW 0.73 [0.66, 0.79] 
CNN 0.86 [0.83, 0.89] 
LDA-RBST 0.75 [0.69, 0.81] 
NN-HDF 0.58 [0.51, 0.65]  

Fig. 5. Tuning rresults per parameter using Bag-of-Visual-Words (BoVW) method: (a) area under the receiver operating characteristic curve (AZ) versus number of 
clusterings using Scale Invariant Feature Transform (SIFT) features, (b) mean-squared error versus logarithm of regularization parameter λ. 
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CADx could safely move to segmentation-free methods would benefit 
busy clinical workflows, as providing precise lesion segmentation or 
region-of-interest outlines can be laborious and time consuming in 
practice. Thus, further evaluation studies in larger patient cohorts and 
more diverse image sets would be useful to confirm the performance 
improvement we have observed on CBIS-DDSM from segmentation-free 

representation learning techniques. 
Our second important finding is that our re-implementation of 

existing segmentation-dependent methods yielded performance levels 
on CBIS-DDSM inferior to those reported on the original evaluation 
datasets in the literature. For instance, Huo et al. reported an AZ of 0.88 
using only the spiculation measure feature, while our re-implementation 
achieved an AZ of only 0.53 on CBIS-DDSM using that same feature. 
Additionally, while Sahiner et al. reported an AZ of 0.91, we find an AZ of 
only 0.75 on CBIS-DDSM using our re-implementation of this method. 
There exist several possible explanations for these discrepancies. First, 
the technique used to provide mass lesion segmentations for DDSM was 
not the same as that originally used in any of the segmentation- 
dependent algorithms, which could affect their efficacy. We propose 
that further investigating this sensitivity would be a productive direction 
for future work. Second, as described in the Methods section, the liter
ature does not always describe existing methods in sufficient detail to 
ensure an exact re-implementation, and the original code is rarely 
available, meaning that there likely exist differences in implementation 
between our study and the original work. Third, segmentation- 
dependent techniques in the literature are often tuned on small data
sets, such as 95 images from 68 patients for Huo et al. [7] and 168 
mammograms from 72 patients for Sahiner et al. [6] While we do tune 
salient parameters for these methods as described in Methods, other 
preprocessing choices made in the literature (e.g. neighborhood size for 
Huo et al.) could affect these models’ ability to transfer to new datasets. 
These results reinforce the importance of performing algorithm 

Fig. 6. Images and class activation maps (CAMs) from the convolutional neural network (CNN) model for (a) true positive, (b) false positive, (c) false negative, and 
(d) true negative examples. CAMs presented depict areas most responsible for the correct classification in red and those least responsible in blue– i.e. for examples (a) 
and (c), weights are those for the malignant class while in examples (b) and (d) these weights are for the benign class. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 3 
List of top features from method of Sahiner et al.  

Top 10 
Morphological 

Top 10 Texture Top 10 Combined 

Perimeter RLS Long Run Emphasis of 
RBST, Offset: 45◦

Perimeter 

Contrast GLCM Entropy of RBST, 
Offset: − 2, 2, Distance: 2 

Contrast 

Mean of RDSa) GLCM Entropy of RBST, 
Offset: − 3, − 3, Distance: 3 

GLCM Difference Entropy of 
RBST, Offset: − 16, − 16, 
Distance: 16 

Area Ratio of RDS 
a) 

GLCM Difference Variance of 
RBST, Offset: 0, 12, Distance: 
12 

GLCM Difference Average of 
RBST, Offset: − 12, 12, 
Distance: 12 

Perimeter to Area 
Ratio 

GLCM Difference Variance of 
RBST, Offset: − 12, − 12, 
Distance: 12 

GLCM Difference Variance 
of RBST, Offset: − 4, 0, 
Distance: 4 

Convexity GLCM Difference Variance of 
RBST, Offset: − 6, − 6, 
Distance: 6 

GLCM Difference Variance 
of RBST, Offset: 0, 8, 
Distance: 8 

Area GLCM Entropy of RBST, 
Offset: − 8, 0, Distance: 8 

GLCM Difference Entropy of 
RBST, Offset: 0, 16, 
Distance: 16 

Entropy of RDS a) GLCM Energy of RBST, 
Offset: − 16, − 16, Distance: 
16 

GLCM Entropy of RBST, 
Offset: − 2, 0, Distance: 2 

Standard Deviation 
of RDS a) 

GLCM Difference Average of 
RBST, Offset: − 2, 2, Distance: 
2 

GLCM Entropy of RBST, 
Offset: 0, 4, Distance: 4 

Zero-crossing 
Count of RDS a) 

GLCM Inverse Difference 
Moment of RBST, Offset: − 6, 
− 6, Distance: 6 

GLCM Sum Entropy of 
RBST, Offset: 0, 1, Distance: 
1  

a) Radial Distance Signal. 

Table 4 
Per-feature Results of NN-HDF Method on CBIS-DDSM and Literature Datasets.  

Feature Literature AZ CBIS-DDSM AZ 

Spiculation Measure 0.88 0.53 
Sharpness 0.53 0.53 
Average Gray Level 0.65 0.52 
Contrast 0.59 0.52 
Texture Measure 0.54 0.51  
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assessment on large public datasets and exerting consistent effort to 
publicly release new datasets for evaluation as acquisition hardware and 
software change. 

Our study has several important limitations, some of which have 
been previously mentioned. First, the comparison we have performed 
between our CBIS-DDSM results and those reported in the literature is 
imperfect, as we were not able to acquire the complete code for every 
method. This being said, we use standard implementations of CNN and 
BoVW methods [10,11], use code provided by Sahiner for LDA-RBST 
[6], and had two separate researchers implement NN-HDF to ensure 
repeatability; code for each method can be made available upon request. 
Furthermore, our results in Fig. 4 indicate that our implementation for 
isolating the margin and periphery – two key parameters of NN-HDF – 
yields appropriate results (cf. the original paper [7]). Another limitation 
of our work is that we utilize the segmentations provided by CBIS-DDSM 
because code for methods used in Sahiner et al. and Huo et al. was un
available; while we believe this to be a reasonable approach, the dif
ference in segmentation methods could affect the performance of these 
two techniques. A final limitation of our study is that the DDSM data set 
is itself an old collection comprising scanned film mammography. 
Modern mammography is digital, and the results of the methods 
described in this paper could be different if we used a digital 
mammography collection. Note that this caveat is not confined to 
segmentation-dependent methods, as segmentation-free deep learning 
methods in particular carry the potential to focus on features that are 
semantically nonsensical as a result of data-driven feature learning, and 
rigorous evaluation procedures should be utilized to ensure that clini
cally reasonable features and spatial regions are being utilized. Given 
the scarcity of public, freely available collections of digital mammog
raphy images, and because many prior works have used the DDSM for 
evaluation, we have chosen to use the CBIS-DDSM collection as the basis 
of the present work. In the future, it would be helpful to evaluate all 
CADx methods on digital mammography data sets should they become 
available, and to remain keenly attuned to the potential for confounding 
variables such as image quality, latent subsets in the data, and label 
inconsistency to result in flawed assessments of classifier performance. 

6. Conclusions 

In this work, we use the public CBIS-DDSM dataset to compare the 
performance of multiple segmentation-free and segmentation- 
dependent CADx algorithms using a common evaluation standard. We 
find that segmentation-free representation learning techniques such as 
BoVW and CNN are able to equal or outperform re-implementations of 
segmentation-dependent CADx algorithms on CBIS-DDSM. If verified on 
larger populations, the use of segmentation-free techniques could in
crease the positive impact of CADx systems on clinical workflows by 
minimizing the amount of clinician time and precision required to uti
lize them effectively. We also observe that segmentation-dependent 
CADx algorithms do not perform as well on CBIS-DDSM as on the 
original evaluation datasets in the literature, implying that some com
bination of differences in segmentation approach, variations in imple
mentation, or an underlying lack of generalizability are affecting 
algorithm performance. It is our hope that this work provides motivation 
for further study of different mass classification algorithms using public 
datasets, which would greatly benefit both clinical and scientific 
communities. 
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