
Doubly Weak Supervision of Deep
Learning Models for Head CT

Khaled Saab1(B), Jared Dunnmon2 , Roger Goldman3 , Alex Ratner2 ,
Hersh Sagreiya3 , Christopher Ré2 , and Daniel Rubin4
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Abstract. Recent deep learning models for intracranial hemorrhage
(ICH) detection on computed tomography of the head have relied upon
large datasets hand-labeled at either the full-scan level or at the individ-
ual slice-level. Though these models have demonstrated favorable empir-
ical performance, the hand-labeled datasets upon which they rely are
time-consuming and expensive to create. Further, given limited time,
modelers must currently make an explicit choice between scan-level
supervision, which leverages large numbers of patients, and slice-level
supervision, which yields clinically insightful output in the axial and in-
plane dimensions. In this work, we propose doubly weak supervision,
where we (1) weakly label at the scan-level to scalably incorporate data
from large populations and (2) model the problem using an attention-
based multiple-instance learning approach that can provide useful signal
at both axial and in-plane granularities, even with scan-level supervi-
sion. Models trained using this doubly weak supervision approach yield
an average ROC-AUC score of 0.91, which is competitive with those
of models trained using large, hand-labeled datasets, while requiring less
than 10 h of clinician labeling time. Further, our models place large atten-
tion weights on the same slices used by the clinician to arrive at the ICH
classification, and occlusion maps indicate heavy influence from clinically
salient in-plane regions.
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1 Introduction

Non-contrast computed tomography of the head (HCT) is the most commonly
used first-line diagnostic imaging method for patients presenting with acute
neurologic deficits or head trauma [3]. The problem of rapidly detecting such
pathologies as intracranial hemorrhage (ICH) on HCT represents an important
task in clinical radiology to expedite clinical triage and care. For example, in
the case of a stroke, doctors must quickly rule out hemorrhage before beginning
treatment with tissue plasminogen activator to break down clots. Encourag-
ingly, machine learning algorithms based on deep convolutional neural networks
(CNNs) have recently demonstrated high levels of performance on automated
ICH detection [1,2,9,10]. However, development of these models has relied on
large datasets hand-labeled at either the scan-level or the individual slice-level,
each of which requires significant investment of domain expert labeling time. For
perspective, Chang et al. [1] use 512,598 slices from 10,159 scans annotated with
voxel-level segmentation masks by a board-certified radiologist, Lee et al. [10]
use 14,758 slices from 904 scans hand-labeled at the slice-level by five separate
board-certified neuroradiologists, Chilamkurthy et al. [2] use subsets of a total
of 313,318 scans hand-labeled at the individual slice-level, and Jnawali et al. [9]
use 40,367 scans labeled at the scan-level.

The different supervision strategies pursued in existing work point to an
underlying trade-off that has important implications in a clinical environment.
While expending a fixed budget of labeling effort at the scan-level allows models
to leverage larger patient populations that could improve generalization, super-
vising at the slice-level yields models that output useful diagnostic information
in both axial and in-plane dimensions [1,2,9,10]. Slice-level and voxel-level infor-
mation could be particularly useful to clinicians for purposes ranging from slice
prioritization while reading to assessment of the clinical relevance of model pre-
dictions. In this work, we propose a method by which one can combine two
separate techniques for using weaker, or noisier, supervision – generative mod-
eling of domain-specific heuristics to create scan-level labels, and discriminative
modeling within a multiple-instance learning (MIL) framework – to rapidly train
deep learning models for ICH detection. We present evidence that this approach
can provide the best of both worlds: supervision at the scan-level that is cheap
to acquire for large populations, along with axial and in-plane output that can
improve both practical utility and interpretability.

With a total investment of under 10 h of clinician time and a modestly sized
dataset, our approach achieves an average Area Under the Receiver Operating
Characteristic Curve (ROC-AUC) score of 0.91 on ICH detection. This result is
comparable to existing results using large hand-labeled datasets. Moreover, our
model formulation enables insightful information to be extracted at a level more
granular than the provided supervision, as we can use the attention weights
themselves to identify important axial slices and standard network occlusion
techniques to quickly identify salient in-plane regions. Our results point to a
promising approach for developing clinically useful classification models that
require minimal clinician labeling time.
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2 Related Work

Deep learning models such as CNNs are capable of extracting meaningful pat-
terns from raw inputs for a wide variety of medical imaging tasks, ranging
from cancer diagnosis [5] to chest radiograph worklist prioritization [4]. Several
researchers have recently utilized large, hand-labeled datasets labeled at varying
degrees of granularity to achieve high levels of performance for ICH detection
on HCT; Table 1 summarizes these results in the context of the present work.

Table 1. Summary of recent studies on ICH detection with deep learning [1,2,9,10].

Source Dataset size Labeling Model Explainability ROC-AUC

Lee et al. 14,758 slices Slice 2D CNN Heatmaps 0.96

Chang et al. 512,598 slices Slice 3D/2D CNN Bounding boxes 0.98

Chilamkurthy et al. 165,809 slices Slice 2D CNN Segmentations 0.93

Jnawali et al. 40,357 scans Scan 3D CNN None 0.86

Ours 4,340 scans Scan 2D CNN Occlusion maps 0.91

We propose using weak supervision methods to rapidly train ICH detec-
tion models, as these techniques can substantially reduce required labeling time.
Weak supervision formally refers to using weaker, or noisier signals to supervise
training of machine learning models. Notable work that uses weak supervision
approaches for medical imaging includes that of Wang et al. [13] on chest radio-
graph classification and that of Fries et al. [6] on rare disease detection from
cardiac magnetic resonance imaging (MRI). In this study, we leverage a type
of weak supervision referred to as data programming [11], in which a genera-
tive modeling technique is used to combine user-defined heuristics written over
unlabeled data to create probabilistic training labels for deep neural networks.

From a discriminative modeling standpoint, we leverage the idea of MIL in
this work. MIL refers to the setting wherein an example consisting of a col-
lection of instances is considered positive if and only if at least one instance
in that collection is positive. Some successful implementations of MIL in medi-
cal imaging include histopathology segmentation [14] and myocardial infarction
detection [12]. We specifically utilize the attention-based MIL technique of Ilse
et al. [8], where an attention layer is trained to aggregate multiple instances (e.g.
CT slices) in order to give an overall bag-level classification (e.g. CT scan).

3 Dataset and Preprocessing

A collection of 5,582 non-contrast HCT studies, which were performed over the
timespan of 2001 through 2014, was acquired from our institutional PACS under
an approved IRB. We considered studies containing more than 29 and less than
44 axial CT slices with 5mm axial resolution. Each series with less than 44 slices
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was padded with additional homogenous images with Hounsfield Unit values of
0 such that they contained 44 CT slices. The center 32 slices were then selected
for automated analysis. The resulting dataset consisted of 4,340 CT studies
with accompanying text reports that could be used for weak label extraction
via data programming, as described in Methods. We randomly selected 4,000
of these as a training set, and obtained scan-level hand-labels for the remaining
340 determined through the consensus of two radiology fellows. These 340 hand-
labeled exams were evenly split between development and test sets, and included
44 positive examples for ICH. A single radiologist provided segmentations for 15
of these ICH cases to enable analysis at the in-plane level.

4 Methods

In this work we aim to demonstrate that with minimal required clinician input
(compared to the curation of large hand-labeled datasets), we are able to develop
clinically useful classification models through a doubly weak supervision process,
which we describe in detail below.

Fig. 1. In our doubly weak supervision approach for hemorrhage detection on head
CT, we first use data programming to extract weak scan-level labels from clinical text
reports. We then use a shared ResNet-18 image encoder to compute a feature vector
for each CT slice. This series of feature vectors is aggregated using an attention layer.
The aggregated feature vector is then fed into a classifier, and the scan-level model
output is compared with the weak label from the text via a binary cross-entropy loss.

4.1 First Weak Supervision Layer: Data Programming

To reduce the amount of labeling time required to train our ICH detection model,
we use a method of weak supervision known as data programming, wherein users
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write heuristic labelling functions (LFs) that programmatically label training
data [11]. In our case, a single radiology fellow wrote seven LFs over the text
reports to support generation of weak labels. The LFs consisted of regular expres-
sions that look for phrases in text that either indicate the existence or absence of
ICH. For example, one LF outputs a positive label if the text includes the words
“hemorrhage” or “hematoma,” but does not have nearby negating words like
“no” or “without.” In contrast to the costly approach of manually annotating
thousands of scans, this process took under 10 h of clinician development time
using a hand-labeled development set of 350 reports for LF tuning. Probabilis-
tic labels were then automatically generated from these LFs for the remaining
unlabeled examples using statistical modeling tools in the Snorkel data program-
ming software package, the theory and implementation of which are described
in Ratner et al. [11].

Labels generated for the 350-report validation set using data programming
achieved an F1 score of 0.95 with respect to human annotation. These results
indicate that while noise does exist in our generated labels, they are generally
of high quality.

4.2 Second Weak Supervision Layer: Multiple-Instance Learning

In addition to obtaining weak scan-level labels from the text, we use these coarse
scan-level labels to supervise an MIL model that can naturally produce slice and
voxel-level outputs. HCT classification fits naturally within the MIL paradigm
because we have a single label per CT scan, which comprises a collection of
32 image slices. Further, if a CT scan is labeled as positive for ICH, then there
must exist at least one slice that contains evidence of ICH. We therefore adopt an
attention-based deep MIL algorithm proposed by Ilse et al. [8], which also leads
to natural interpretability in the axial dimension via attention weights computed
for each axial slice. From an implementation standpoint, we first embed each CT
slice into a feature space of dimension 50 using a ResNet-18 encoder [7]. This
ResNet-18 architecture was chosen because it is a standard CNN that performs
well on computer vision tasks, and generalizes just as well to our development set
as deeper variants such as ResNet-50 or ResNet-101. Second, we pass each feature
vector into an attention layer (a two-layer fully connected neural network), which
outputs a weight for each feature vector. These weights are used to compute
a weighted average of the 32 feature vectors for each CT scan. The resulting
averaged feature vector is then passed through a classifier, which in our case is
a single fully-connected layer followed by a sigmoid activation function (Fig. 1).

4.3 Model Training Procedure

Each slice is downsampled to dimensions of 224× 224 and is normalized using
a global mean and standard deviation. We then feed each slice to our ResNet-
18 encoder, which is randomly initialized. We train our models using stochastic
gradient descent with an initial learning rate of 0.1, which is reduced by a factor
of 10 at each epoch if a plateau in the validation loss is observed. The weight
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decay parameter, which was found using a coarse hyperparameter search, is set
to 0.005, and we use the largest batch size that fit into our Tesla P100 GPU,
which was 12 HCT scans. All other parameters are set to their default values.
Model training is performed using the PyTorch 0.4.1 software library, and each
model took approximately six hours to train over 50 epochs.

Due to the low number of positive cases in the ground-truth dataset, model
performance on the test set could be sensitive to the random splitting of the
development and test set. We therefore carry out a five-fold cross-validation
procedure where we repeat a random stratified splitting of the 340 hand-labeled
scans into development and test sets, and report average model performance
over five trials with different random seeds.

5 Results and Discussion

5.1 Evaluating Overall ICH Detection Performance

The first fundamental hypothesis underlying this work is that weakly supervised
MIL can yield high levels of performance on automated detection tasks on HCT.
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Fig. 2. (a) Normalized attention weights (“ATT,” red) compared to ground-truth slice
annotations for ICH (“ICH,” green); the bottom two cases have no ICH. (b) ICH
appears in raw CT slices (column A) as a hyperdense (i.e. whiter) substance as com-
pared within the intracranial vault to the surrounding parenchyma and fluid. Voxel-
level hand labels (column C) coarsely identify voxels most likely to represent ICH.
Occlusion maps (column B) demonstrate favorable correlation with the coarsely labeled
voxels. (Color figure online)
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We evaluate if this is the case by computing the mean ROC-AUC value of our
ICH classifier and assessing if this number is competitive with those presented
in the literature. As shown in Table 1, the 0.91 average ROC-AUC value, with
standard deviation 0.017, obtained for ICH detection from the weakly supervised
CNN-MIL model is comparable to existing results in the literature, even when
using a modestly sized dataset. Importantly, we obtained these results using only
10 h of clinician time spent on labeling, and our labeling approach is fundamen-
tally scalable; to improve performance, we could increase the size of the dataset
by obtaining additional unlabeled data (we did not have more data available for
this study), evaluating our data programming model over the text reports, and
training our CNN-MIL model on the resultant probabilistic labels.

5.2 Analyzing Axial Attention Weights

Our second hypothesis is that even though we supervise at the scan-level, we are
still able to extract meaningful slice-level information from our trained model.
At the core of our attention-based MIL model is a 2-layered neural network (i.e.
the attention layer) that outputs 32 numbers, which are used to take a weighted
average of all 32 feature vectors representing the CT slices. The output of this
attention layer therefore represents how much weight the model places on each
CT slice to make the overall scan-level classification. To assess the behavior of
these axial attention weights, we compute their Gini coefficient, which measures
the inequality amongst the attention weight values. We find a strong positive
correlation between the Gini coefficient and the model prediction, with a Pear-
son correlation coefficient of 0.97 (see Supplementary Material). This indicates
that the lower the probability of hemorrhage (i.e. less likely the model predicts
existence of ICH), the more uniform the attention weights will be (i.e. lower
Gini coefficient), which is what we expect since a negative case would not have
a hemorrhage on any axial slice.

Additionally, we qualitatively analyze these learned weights by comparing
them to the ground truth slice-level annotations of four random true positive
cases and two random true negative cases. As shown in Fig. 2(a), across the four
random true positive cases, we observe that the largest attention weights (in red)
in each case do indeed occur within the band of slices used by the clinician to
make the ICH classification (in green). Quantitatively, the accuracy of the top
20% of slices with the highest attention weights with respect to the slices with
positive ground-truth segmentations1 was 83%, while the accuracy of the top
10% of slices was 93%. Moreover, while we did not constrain the model to output
attention weights that are similar for spatially adjacent slices, those shown in
Fig. 2(a) demonstrate smoothness in the axial direction, indicating that model
predictions appropriately reflect the spatial localization of ICH. Such a result
gives additional confidence that the CNN encoder is learning a representation
that reflects clinically relevant features.

1 Evaluated over the 15 cases with radiologist-provided segmentation.
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5.3 Interpreting In-Plane Signal

Our third hypothesis is that we can extract clinically meaningful in-plane infor-
mation from our trained CNN-MIL model, even though it was weakly supervised
at the study-level. To assess this outcome, we generate occlusion maps for each
slice that indicate which regions most influence model output, and qualitatively
evaluate the degree of overlap between these occlusion maps and the hand-
labeled, voxel-level segmentation. Our occlusion maps are computed by itera-
tively obscuring 20× 20 patches from each CT slice in a scan while recording
the change in the hemorrhage probability emitted by the model. In Fig. 2(b), we
show four random true-positive examples where we clearly see alignment between
extracted occlusion maps and ground-truth segmentation maps. As shown in
Table 1, this type of in-plane information has not been successfully extracted
from ICH detection models supervised at the scan-level, and has been onerous
to achieve for those supervised at the slice-level. For instance, while these occlu-
sion maps are conceptually similar to the prediction report introduced by Lee et
al. [10], our model did not require tens of thousands of expert-labeled slices.

6 Conclusion

In this work, we have used an attention-based MIL model weakly supervised at
the scan-level to achieve ROC-AUC scores comparable with those of state-of-the-
art methods, while using under 10 h of clinician time. Further, we have shown
that these models output meaningful information in axial and in-plane dimen-
sions, which can have substantial clinical utility. These results point towards
a promising approach to training high-performance volumetric imaging models
that leverage large patient populations, provide useful output at high levels of
spatial granularity, and make efficient use of clinician labeling resources.
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