








learned feature vector). In the post-hoc analysis of 36 predicted MRI labels, TAV cases had 94% (17/18) PPV

(precision) and BAV cases had 61% (11/18) PPV, with BAV misclassifications occurring most often in cases with

visible regurgitation and turbulent blood flow.

Fig 6. Patient clustering visualization. (Left) t-SNE visualization of the last hidden layer outputs of the
CNN-LSTM model as applied to 9,230 patient MRI sequences and (right) frames capturing peak flow through the
aorta for a random sample of patients. Blue and orange dots represent TAV and BAV cases. The model clusters
MRIs based on aortic shape and temporal dynamics captured by the LSTM. The top example box (1) contains
clear TAV cases with very circular flow shapes, with (2) and (3) becoming more irregular in shape until (4) shows
highly irregular flow typical of BAV. Misclassifications of BAV (red boxes) generally occur when the model fails to
differentiate regurgitation of the aortic valve and turbulent blood flow through a normal appearing aortic valve
orifice.
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Discussion

In this work we present the first deep learning model for classifying BAV from phase-contrast MRI sequences.

These results were obtained using models requiring only a small amount of labeled data, combined with a large,

imperfectly labeled training set generated via weak supervision. The success of this weak supervision paradigm,

especially for a classification task with substantial class-imbalance such as BAV, represents a critical first step in

the larger goal of automatically labeling unstructured medical imaging from large datasets like the UK Biobank.

For medical applications of machine learning as described here, we propose an additional standard of validation;

that the model not only captures abnormal valve morphology, but more importantly the captured information is

of real-world medical relevance. In our model, BAV individuals showed more than an 1.8-fold increase in risk for

comorbid cardiovascular disease.

The current availability of large unstructured medical imaging datasets is unprecedented in the history of

biomedical research, but the use of data on cardiac morphology derived from medical imaging depends upon

their integration into genetic and epidemiological studies. For most aspects of cardiac structure and function, the

computational tools used to perform clinical measurements require the input or supervision of an experienced

user, typically a cardiologist, radiologist, or technician. Large datasets exploring cardiovascular health such as

MESA and GenTAC which both include imaging data have been limited by the scarcity of expert clinical input in

labeling and extracting relevant information [54,55]. Our approach provides a scalable method to accurately and

automatically label such high value datasets.

Automated classification of imaging data represents the future of imaging research. Weakly supervised

deep learning tools may allow imaging datasets from different institutions which have been interpreted by

different clinicians, to be uniformly ascertained, combined, and analyzed at unprecedented scale, a process termed

harmonization. Independent of any specific research or clinical application, new machine learning tools for analyzing

and harmonizing imaging data collected for different purposes will be the critical link that enables large-scale

studies to connect anatomical and phenotypic data to genomic information, and health-related outcomes. For the

purposes of research, such as genome-wide association studies, higher precision (positive predictive value) is more

important for identifying cases. Conversely, in a clinical application, the flagging of all possible cases of BAV for

manual review by a clinician would be facilitated by a more sensitive threshold. The model presented here can be

tuned to target either application setting.

Our analytical framework and models have limitations. Estimation of the true prevalence of uncommon

conditions such as BAV and ascertainment of outcomes within a given population is complicated by classical

biases in population health science. Registries of BAV typically enroll patients only with clinically apparent

manifestations or treatment for disease which may not account for patients who do not come to medical attention.
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Estimates derived from population-based surveillance are usually limited to relatively small numbers of participants

due to the cost and difficulty of prospective imaging, and small cohort sizes impede accurate estimates for rare

conditions such as BAV. Age and predisposition to research participation may also affect estimates of disease

prevalence, a documented phenomenon within the UK Biobank [56]. Mortality from BAV is accrued cumulatively

over time, thus studies of older participants are missing individuals with severe disease who may have died or been

unable to participate.

Conversely calcific aortic valve disease, which increases in incidence with age, may result in an acquired

form of aortic stenosis difficult to distinguish from BAV by cardiac flow imaging [57]. Given that the 6.2% of

individuals receiving a model-classification of BAV is higher than previous population estimates of BAV prevalence

(0.5 to 2%), some proportion of BAV-classified individuals almost certainly have age-related calcific aortic valve

disease. Additional scrutiny of model-classified BAV cases show that the model fails to differentiate regurgitation

of the aortic valve from turbulent blood flow through an aortic valve with a normal circular or symmetrically

triangular appearing orifice (Fig. 6). Thus even for the current best-performing model displaying good predictive

characteristics for a class-imbalanced problem, misclassification events attributable to discreet failure modes are

evident for subsequent iterations of the model.

Conclusion

This work demonstrates how weak supervision can be used to train a state-of-the-art deep learning model for BAV

classification using unlabeled MRI sequences. Using domain heuristics encoded as functions to programmatically

generate large-scale, imperfect training data provided substantial improvements in classification performance over

models trained on hand-labeled data alone. Transforming domain insights into labeling functions instead of static

labels mitigates some of the challenges inherent in the domain of medical imaging, such as extreme class imbalance,

limited training data, and scarcity of expert input. Most importantly, our BAV classifier successfully identifed

individuals at long-term risk for cardiovascular disease, demonstrating real-world relevance of imaging models

built using weak supervision techniques.
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Supporting information

S1 Videos. Example MRI videos. BAV and TAV subject videos in CINE, MAG, and VENC encodings.

S1 Appendix. Aorta localization and cardiac cycle alignment. Detailed overview of MRI preprocessing.

S1 Fig. Localizing the aortic valve. (Left) Full, uncropped MAG series MRI frame, showing per pixel

standard deviation. (Right) Green box is a zoom of the heart region and the red box corresponds to the aorta –

the highest weighted pixel area in the image.

S2 Fig. Per-frame z-scores for a random sample of 50 MRI sequences. The majority of series only

contains pixel information in the first 15 frames of data.

S3 Fig. Area under the ROC curve (AUROC) for all scale-up models. As the CNN-LSTM is trained

on more weakly labeled data AUROC generally improves. In very small training set regimes (e.g., 100 - 1000

instances) using only weakly labeled data, performance degrades after > 0.6 true positive rate.

S4 Fig. Development set BAV subjects. All 6 BAV subjects used for labeling function development. For

the generative model, 6 contiguous frames performed best at classifying training data using labeling functions,

while in the discriminative CNN-LSTM model, 10 frames performed best. This shows how the deep learning

model was better able to take advantage of subtle features at the start and end of the cardiac cycle, while labeling

functions are restricted to less ambiguous features near the peak frame.

S1 Table. Complete Labeling Function Implementations.

S2 Table. CNN-LSTM Model Hyperparameter Search Grid.
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