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Weak supervision as an efficient approach for automated
seizure detection in electroencephalography
Khaled Saab 1,5✉, Jared Dunnmon2,5, Christopher Ré2, Daniel Rubin 3,5 and Christopher Lee-Messer 4,5✉

Automated seizure detection from electroencephalography (EEG) would improve the quality of patient care while reducing medical
costs, but achieving reliably high performance across patients has proven difficult. Convolutional Neural Networks (CNNs) show
promise in addressing this problem, but they are limited by a lack of large labeled training datasets. We propose using imperfect
but plentiful archived annotations to train CNNs for automated, real-time EEG seizure detection across patients. While these weak
annotations indicate possible seizures with precision scores as low as 0.37, they are commonly produced in large volumes within
existing clinical workflows by a mixed group of technicians, fellows, students, and board-certified epileptologists. We find that CNNs
trained using such weak annotations achieve Area Under the Receiver Operating Characteristic curve (AUROC) values of 0.93 and
0.94 for pediatric and adult seizure onset detection, respectively. Compared to currently deployed clinical software, our model
provides a 31% increase (18 points) in F1-score for pediatric patients and a 17% increase (11 points) for adult patients. These results
demonstrate that weak annotations, which are sustainably collected via existing clinical workflows, can be leveraged to produce
clinically useful seizure detection models.
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INTRODUCTION
Seizures are an important cause of morbidity worldwide, with a
lifetime prevalence of 5–10% in the global population. Seizures
commonly result from an acute response to a brain insult such as
trauma, stroke, or meningitis; such acute symptomatic seizures
often cause injury secondary to their clinical manifestations and
may exacerbate ongoing brain injury1–5. Seizures can also be
chronic as in the case of epilepsy, which is defined as a disorder of
the brain leading to an enduring predisposition to generate
epileptic seizures (see Supplementary Note 1 for detailed
definition)6. Epilepsy affects over 50 million individuals—nearly
1% of the global population—and leaves these patients with
increased risks of injury, death, unemployment, depression,
anxiety, permanent memory impairment, and many other
psychiatric and psycho-social disorders7–9.
Monitoring at-risk patients for epileptic and acute symptomatic

seizures is critical to making important therapeutic decisions.
Because abnormal patterns of brain activity are an essential
characteristic of seizures7, electroencephalography (EEG) analysis
is the preferred method for seizure monitoring. EEG is a diagnostic
test that detects epileptiform discharges (including electrographic
seizures7) by monitoring voltage fluctuations caused by neural
activity within the brain. While EEG-based seizure detection has
yielded improved clinical results, these advances have come at the
cost of massive physician burden. To perform seizure detection
using EEG, an EEG reader must visually examine up to days of EEG
signals to determine whether a pattern of abnormal electrical
discharges indicative of a seizure has occurred.
Manual analysis of EEG data by board-certified EEG readers is

extremely time-consuming and costly. A recent study of non-
federal US hospitals concluded that continuous EEG monitoring
accounted for an average of 5% of total hospital charges for
monitored ICU patients10, and continuous EEG monitoring is

rationed in practice because there are not an adequate number of
interpreters to provide around-the-clock human monitoring for all
patients who would benefit11. The increasingly large clinical
burden of manual EEG analysis has motivated the recent
development of automated algorithms for detecting seizures on
EEG. Modern deep machine learning methods represent a
particularly promising set of approaches for this task, as they
have recently seen widespread success in medical domains
including skin lesion classification from dermatoscopy12, auto-
mated interpretation of chest radiographs13, in-hospital mortality
prediction from electronic health records14, and many others15–21.
However, existing deep learning methods rely on the curation and
continual maintenance of massive hand-labeled datasets, which
has recently been identified as the major bottleneck in supervised
medical machine learning15. As a result, many existing medical
machine learning models are static with respect to changing
patient populations, disease presentations, sensing hardware, and
other variables. For instance, if a new task is required (e.g.
detecting seizure sub-type), then a new labeled dataset must be
curated. Further, recent analyses have shown that ensuring model
generalization across patient populations with different character-
istics remains a challenge, necessitating label curation and model
retraining to deploy machine learning models to different
demographics22,23. Practically, creating each new dataset could
require physician-months or physician-years of labeling time,
making repeated re-labeling campaigns a substantial diversion of
resources. This problem is particularly salient for automated EEG
monitoring, as achieving reliably high seizure detection perfor-
mance across different patients even within the same population
has proven difficult24–28.
In this work, we provide a strategy for training high-

performance deep learning models for seizure onset detection
that addresses these challenges. Instead of relying on expensive
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clinician-provided labels, we train deep learning models for
seizure onset detection using noisier annotations that are
imperfect, but inexpensive, and already being produced within
existing clinical workflows. Specifically, when a patient undergoes
EEG monitoring at a hospital, a mixed group of technicians,
fellows, students, and board-certified epileptologists preliminarily
analyze the EEG signal to provide initial annotations of seizure
times, which a board-certified clinician eventually uses as the
starting point for their own analysis11. We refer to these initial
annotations as weak annotations because of the specific
circumstances in which they are produced. Such weak annotations
are meant to be helpful for clinicians, but they are not required to
be complete, and thus produce only sparse labeling of seizures in
any given signal. In current clinical practice, experienced
technicians provide the majority of these initial weak annotations.
These personnel are specifically instructed to mark suspicious EEG
segments while erring on the side of high sensitivity in ambiguous
cases; this procedure leads to annotations with an inherently high
false-positive rate. However, because each EEG signal may contain
a large number of distinct seizures, these annotators usually mark
only a subset of the seizures in a given signal, meaning that
overall annotation recall is also modest. Further, a subset of
seizure annotations comes from medical students and fellows
with varying levels of experience, resulting in annotations that are
generally less reliable than those provided by the technicians.
Each of these human annotators may also have used other data
modalities, such as patient videos, to inform their annotation.
Thus, a seizure may be annotated even though nothing indicative
of a seizure is present in the EEG signal. To estimate the quality of
these weak annotations as labels for a machine learning model, a
board-certified clinician (Dr. Christopher Lee-Messer, or CLM)
annotated every seizure in 30 pediatric EEG signals that included
32 seizures, and 82 adult EEG signals that included 91 seizures,
sourced from the dataset used in this work. The weak annotations
in those signals had an overall precision of 0.37 and recall of 0.45.
While most previous studies24–28 use clinician-generated labels for
training, we propose to directly use these weak annotations for
model supervision instead (Fig. 1). This approach creates a
sustainable workflow for training deep learning algorithms for
seizure detection that could be continually updated and improved

with no additional resources with respect to current practice.
Accurate automated seizure detection tools trained using weak
annotations could reduce existing clinician and technician burden
while simultaneously improving quality of care, lowering costs,
and expanding access to EEG monitoring services.
In this work, we present a deep learning model for the

detection of seizure onset across different patients that is trained
on a massive, weakly labeled dataset of scalp EEGs. This approach
formally falls within the scope of weak supervision techniques,
which include data programming29, distant supervision30, and
crowdsourcing31. We consider training labels drawn only from the
weak annotations included with each EEG signal archived by a
pediatric and an adult hospital at our institution—that is, we use
no data hand-labeled by expert clinicians for model training. In
total, our dataset consists of 136,014 EEG signals coming from
12,430 patients. For perspective, to obtain clinician-provided
hand-labels for the number of signals we consider in this study—
which cover 12 years of clinical practice at a major center—we
conservatively estimate that it would require over 25,000 person-
hours and $3 million dollars in clinician support (136,014 EEG
signals, $125/hour for the clinician rate11, and a median EEG read
time of 12.5 min32). Since clinicians usually read EEG signals in
10–15 s-long pages, we observed that some seizures may be
detected in the scope of a single page, while other seizures
require viewing multiple pages after seizure onset for accurate
detection. We consider these different time scales by building
models for 12-s clips to simulate fast detection (i.e. single-page)
scenarios, and 60-s clips to simulate slow detection (i.e. multi-
page) scenarios (see Supplementary Fig. 1 for examples). In each
case, we evaluate the effectiveness of using weak annotations for
model supervision. We use only the most common 10–20 subset
of EEG leads to ensure that our model is applicable to as many
patients as possible. Our fast detection models achieve an average
Area Under the Receiver Operating Characteristic Curve (AUROC)
of 0.91 on pediatric patients, while attaining a lower average
(AUROC) of 0.82 on adult patients. On the other hand, our slow-
detection models provide improved performance levels of 0.93
AUROC on pediatrics and 0.94 AUROC on adults. We also compare
our models with traditional machine learning approaches for
seizure detection, with models trained on a publicly available EEG

Fig. 1 High-level view of integrating deep learning training within the clinical workflow. After EEG monitoring on patients, a mixed group
annotates the signal before a clinician does the final assessment to generate a medical report. In our work, we evaluate using weak labels,
which are fast and cheap to acquire within the clinical workflow, to train deep learning models for onset seizure detection. On the other hand,
existing methods use expert-provided gold labels, which are costly and not a part of the clinical workflow.
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database, and with Persyst, a leading provider of clinically
deployed software for automatically detecting seizures from
EEG33. Our models consistently outperform those trained using
either traditional machine learning approaches on our dataset or
the same model architecture on a publicly available EEG database.
Further, our approach achieves higher performance than Persyst
by 18 and 11 F1-points for pediatric and adult populations
respectively, which suggests immediate clinical utility. In the
following sections, we present related work, describe our
experimental setup, evaluate the performance of our models,
assess our results in the context of publicly available datasets, and
analyze success and failure modes of the learned models from a
clinical perspective.
Researchers have previously tackled the problem of detecting

the transition from the preictal period, which precedes seizure to
the ictal period that is characterized by seizure. This is a
challenging task because the transition between the preictal
and ictal periods is often subtle24. Further, because seizures have
patient-specific characteristics, many detection algorithms require
training on each individual patient24–28. Bandarabadi et al.24

propose seizure detection by using amplitude distribution
histograms of features extracted from EEG recordings, such as
spectral power features from different frequency bands. While the
authors propose a novel yet simple statistical method, model
parameters need to be tuned by training on previous seizures for
each patient. Moreover, their dataset consists of 2693 h of EEG
recordings from over 18 patients and was annotated through
visual inspection by epileptologists, along with analysis of video
recordings of each patient. Ozdemir et al.25 use intracranial EEG
signals to develop an automated seizure detection system, which
extracts features using a Hilbert-Huang transform and uses a
Bayesian network for classification. The authors use the Freiburg
EEG database and had a certified epileptologist visually inspect
577 h of iEEG recordings to provide annotations at the electrode-
level. Ozdemir et al. obtained impressive results of 96.55%
sensitivity and 0.21 false alarms per hour; however, their model
is patient-specific and requires intracranial EEG recordings, which
necessitate invasive surgery and are not relevant for the large
patient population with scalp-only EEGs. Persyst is the trade name
of a common, clinically deployed commercial seizure auto-
detection software that is based on automated analysis of raw
EEG signals and various spectrograms using a combination of rule-
based approaches and neural networks33. In practice, rule-based
systems such as those described above are notably brittle with
respect to new sensors, data containing common artifacts, and
generalizing to previously unseen patients. We evaluate some of
these same potential drawbacks in the context of our deep
learning approach in the Results section, and use Persyst as a
baseline against which we evaluate our models.
While many of the previously mentioned works rely on hand-

engineered features generated from the EEG recordings, deep
learning models have gained wide popularity for their ability to
automatically learn features from the input data that achieve
state-of-the-art performance on many medical analysis tasks.
However, a hidden cost of these deep learning models is that they
incorporate large numbers of trainable parameters, and therefore
they typically require massive labeled training datasets to achieve
high performance. Ullah et al.34 proposed a system composed of
an ensemble of pyramidal one-dimensional Convolutional Neural
Networks (CNNs). They used the University of Bonn dataset, which
consists of EEG signals from 10 patients that were visually
inspected by expert neurologists. They also use two data
augmentation schemes and report a test accuracy of 99%.
However, these authors train and test on the same patients (five
normal and five epileptic patients). Acharya et al.35 used the same
dataset as Ullah et al., and implemented a 12-layer CNN to detect
normal, preictal, and ictal (seizure) classes from EEG signals and
achieve 88.67% accuracy. More relevant to the present work,

Temple University Hospital (TUH) recently released the world’s
largest publicly available EEG dataset36 containing the time of
occurrence and type of 2,012 seizures (v. 1.4). Asif et al.37 recently
used this dataset to achieve a weighted F1-score up to 0.90 for
seizure detection using a hand-engineered preprocessing pipeline
to extract features coupled with a densely connected CNN (Dense-
CNN). While the TUH dataset does offer the opportunity to train
deep learning models using a large corpus of EEG signals, its
curation required trained students to hand-label 2997 EEG signals,
which is not sustainable for rapidly curating new datasets to keep
pace with evolving patient populations and sensing technologies.
We address this challenge by evaluating the performance of deep
learning models using weak annotations instead, which allows us
to use a dataset with over 40 times more EEG signals than
available from TUH. Since these annotations are a natural part of
the existing clinical workflow, our approach represents a sustain-
able pipeline for developing automated seizure detection systems.

RESULTS
Datasets
We approach the seizure onset detection problem as a classifica-
tion task over both 12-s (fast detection) and 60-s (slow detection)
EEG clips. After undersampling the plentiful negative examples to
obtain a balanced dataset, our pediatric seizure onset detection
dataset contains 25,386 class-balanced EEG clips for training, and
498 additional EEG clips with gold-standard labels provided by a
board-certified EEG reader (CLM). For the adult dataset, we have
32,596 class-balanced EEG clips for training, and 480 additional
EEG clips with gold-standard labels. For each population, the gold-
labeled data are divided equally into a development set, used to
tune hyperparameters during training, and a held-out test set,
used for final evaluation of our trained model. Clinical details of
our datasets are summarized in Fig. 2 for the pediatric dataset and
Supplementary Fig. 2 for the adult dataset. Additional detail on
model architecture, data preprocessing, and model training
procedures can be found in the Methods section.

Evaluation
We first validate that deep learning performs better than
traditional machine learning approaches for the task of cross-
patient seizure onset detection. Traditional machine learning
approaches to discriminate preictal EEG segments from ictal ones
consist of training classifiers such as Logistic Regression (LR),
Support Vector Machines (SVM), and Random Forests (RF) using
hand-engineered time-frequency domain features38,39. We follow
procedures in Schiratti et al.38 to train LR and RF classifiers for the
task of seizure onset detection given 12-s or 60-s EEG clips over
the same datasets described above. We use the same hyperpara-
meters for RF training as Schiratti et al.38, which is 100 estimators
and a maximum depth of 4. A variety of commonly used
features39 were extracted from each EEG clip to support the
analysis; these include time domain features such mean, variance,
skewness, kurtosis, total signal area, peak-to-peak, number of zero-
crossings, and decorrelation times; frequency domain features
such as total energy spectrum, energy percentage across
fundamental rhythmic bands (extracted using the Discrete Fourier
Transform), and the coefficients from the Discrete Wavelet
Transform; brain connectivity features such as the maximal
absolute cross-correlation value to measure similarity between
electrodes; and local and global electrode graph measures38–41.
Second, we validate that we achieve clinically useful perfor-

mance by comparing our model to Persyst Version 13 (Persyst-13),
a state-of-the-art commercial EEG software package used for
automated detection of seizures and spikes33, on the same
evaluation set.
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Third, to show that training our deep learning model over a
large, weakly annotated dataset is advantageous, we compare the
performance of the same CNN architecture trained over (1) the
large weakly annotated dataset, (2) a small gold-labeled dataset
(i.e., our hand-labeled development set), and (3) a large, publicly
available hand-labeled EEG dataset (TUH). We also show how the
performance of the model scales as we increase the amount of
weakly labeled training data.
Fourth, we evaluate how well the trained models can generalize

across different patient populations and hospitals. To do this, we
evaluate the model trained using adult EEGs on the pediatric test

set (and vice-versa), and assess our models trained on large
weakly labeled datasets against the TUH dataset (and vice-versa).
Fifth, we evaluate the success and failure modes of our fast

detection model trained over the weak annotations for the
pediatric population. We perform this error analysis by having a
trained neurologist examine how the model prediction changes
over time for complete EEG signals within our held-out test set. In
addition to analyzing model predictions, we also extract heatmaps
for each clip that indicate which time-intervals and EEG leads have
the most influence on a given model prediction. Each heatmap is
calculated by occluding (i.e., replacing with zeros) one-second
segments across each 12-s EEG clip for each of the 19 channels,

Fig. 2 Data description for Lucile Packard Children’s Hospital (LPCH). a the gender distribution, b the age distribution, c the number of EEG
recordings per patient, d the durations of EEG recordings in hours, e a histogram of the medicine types, f a hierarchical pie graph describing
the different seizure types, g a hierarchical pie graph describing etiology types, h the percentages of EEG signals collected in different
locations, and i the distribution of seizure locations. Subfigures a–d are statistics on the entire dataset, while e–i are on the held-out test set
that included 52 seizures.
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and observing the percent change in the model’s prediction.
These heatmaps represent the degree to which each one-second
segment of each channel contributes to a positive model
prediction.

Comparison to baseline methods
Since the output of Persyst is a binary indication of seizure without
parameters to adjust false-positive or true-positive rates, AUROC is
not a meaningful metric. Therefore, we compare the F1-scores and
false-positive rates (FPRs) on our test set for the two classical
machine learning classifiers (Logistic Regression and Random
Forest), Persyst, and our CNN model trained over either a small
gold-labeled training set or the large weakly annotated training
set in Table 1 (refer to Supplementary Tables 1 and 2 for
confidence intervals). We observe that our CNN model trained on
weak labels substantially outperforms all baselines on both adult
and pediatric datasets with respect to the F1-score metric.

Model performance and scaling analysis
In Fig. 3, we compare how well models perform on adult and
pediatric test sets when using a large weakly annotated training
set over both 12-s and 60-s clips. For pediatric patients, we
achieve an average AUROC of 0.91 over five trials when we train
our model for 12-s EEG clip seizure detection, compared to an
average AUROC of 0.93 when trained for 60-s EEG clips (Fig. 3a).
For adult patients, we achieve an average AUROC of 0.82 when we
train over 12-s EEG clips, compared to an average AUROC of 0.94
when trained over the 60-s EEG clips (Fig. 3b). We also trained our
fast detection models with varying training set sizes to observe
how model performance scales with sample size. In Fig. 3c, d, we
present the average AUROC on the test set trained over five
random seeds. We not only observe rapid performance improve-
ment with additional examples, but also demonstrate a reduction
in model variance across training runs with different random
seeds. Thus, our scaling results suggest that the performance of
machine learning models supervised by imperfect weak annota-
tions continues to improve as more weakly labeled data are
added, which is consistent with the results of recent studies of
weak supervision techniques42.

Performance on different patient populations
An increasing concern in medical machine learning is how well a
trained model is able to perform on heterogeneous patient
populations at test time. In our case, we are interested in how our
models, which have either only seen pediatric or adult patient
data during training, would perform when evaluated against the
other age group. As seen in Fig. 4, there was a substantial
decrease of 26 AUROC points in performance for the median
model trained on pediatric patients that was tested on adult
patients in the fast detection regime. On the other hand, there
was a decrease of only 4 AUROC points in performance for the
median model trained on adult patients and tested on pediatric
patients. Interestingly, these generalization trends change in the
slow-detection regime, where we observe a 7 AUROC point
decrease if the pediatric model is tested on adults versus a 14
AUROC point decrease if the adult model is tested on pediatric
patients. These results suggest that adult and pediatric patients
are different enough that age-naïve models should not be
expected to reliably generalize from one population to the other.
We also evaluate model performance on EEG data coming from

a different hospital, as distributional shifts in the EEG data
resultant from changes in the patient population, the measure-
ment hardware, or perhaps even the protocols followed by clinical
staff could cause performance degradation. To measure these
effects, we evaluated our model trained on the 60-s Stanford
dataset against 60-s seizure onset clips from the TUH test set. We
also evaluated the model trained on TUH seizure onset clips
against the Stanford test set. As seen in Fig. 5a, our Stanford
model performed 4 points AUROC worse than the TUH model
when evaluated against the TUH test set, while our TUH model
performed 24 AUROC points worse than the Stanford model when
evaluated against the Stanford test set. These observations
support the idea that deep learning models do not necessarily
transfer directly from one institution to another, and that the
ability to train weakly supervised models on an institution-by-
institution basis may provide value in practice. Further, we find
that the model trained on TUH and tested on TUH, using the same
model architecture and training procedures, performed 16 AUROC
points worse that the Stanford model tested on Stanford. These
results further support the conclusion that large, weakly labeled
datasets may have practical advantages over smaller gold-labeled
datasets.
We also assess whether the Stanford data can improve model

performance on TUH via transfer learning. Specifically, because
the Stanford model was trained on a larger dataset covering a
wide range of seizures, we might expect improvements when
performing transfer learning from Stanford to TUH. To test this
hypothesis, we fine-tune the last two fully connected layers of the
Stanford model using the TUH dataset, with the rest of the model
parameters frozen. As shown in Fig. 5b, we observe a substantial
improvement of 10 points AUROC when fine-tuning our Stanford-
trained model on the TUH dataset with respect to training a model
on the smaller TUH dataset. These results suggest that our weakly
supervised models have learned a representation of the data that
is broadly helpful for identifying seizure onset, as this representa-
tion is useful in seizure onset detection on data from a different
hospital.

Error analysis
While we train deep learning models for both fast and slow
seizure onset detection over pediatric and adult populations, we
focus our detailed clinical error analysis on the pediatric fast
detection model, which achieves high levels of performance (0.91
AUROC). The fast detection task is challenging even for clinicians,
who generally have access to additional information including
baseline EEG activity contained in the remainder of the EEG signal,
video data of the patient, medical imaging studies, previous

Table 1. Comparison of baseline models to the weakly supervised
CNN using the F1-score and FPR metrics.

Performance comparison of baseline models to the weakly
supervised model

Pediatric (F1-
score, FPR)

Adult (F1-score, FPR)

12-s 60-s 12-s 60-s

Logistic regression 0.25, 0.36 0.37, 0.50 0.24, 0.56 0.38, 0.55

Random forest 0.38, 0.19 0.56, 0.52 0.37, 0.61 0.58. 0.52

Persyst-13 0.07, 0.015 0.61, 0.10 0, 0 0.65, 0.054

Dense-CNN (small
gold-standard set)

0.29, 0.39 0.60, 0.20 0.28, 0.47 0.41, 0.16

Dense-CNN (weak
annotations)

0.67, 0.13 0.77, 0.10 0.49, 0.14 0.76, 0.079

The F1-score of our weakly supervised CNN outperforms the baselines by
substantial margins. The small gold-standard training dataset consisted of
241 clips for pediatrics and 246 clips for adults. The weakly annotated
training dataset consisted of 25,386 clips for pediatrics and 32,596 clips for
adults.
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clinical reports, and other detailed patient history to guide their
EEG interpretation. For our error analysis, a fellowship-trained EEG
reader identified representative clips for true-positive, false-
positive, false-negative, and true-negative examples. In Fig. 6, we
display each clip, overlaid with a heatmap indicating the parts of
the clip that most influenced model prediction, along with model
prediction values before, during, and after the clip. In Supple-
mentary Figs 3 and 4, we compare these heatmaps to those
generated on the exact same samples using the model trained on
the small, gold-labeled dataset and show that the weakly
supervised model tends to localize salient seizure activity more
sharply.
Figure 6a shows an example in which a frontally-predominant

generalized seizure is correctly detected by our model. Of note,
the heatmap demonstrates that the model is sensitive to higher
amplitude spike and wave regions in frontal and temporal regions
with less sensitivity to the waveforms in lower-amplitude
channels. Also, it is not heavily influenced by the lower-

amplitude background before and after this brief seizure. The
fact that the model is most influenced by channels that exhibit a
consistent pattern (i.e., Fp1, Fp2, T3, T4) suggests that our pediatric
fast detection model uses common mechanisms to detect focal
and generalized spike-wave seizures.
The true-positive example in Fig. 6b indicates a similar model

response to a generalized spike-wave seizure. Further, it illustrates
another potentially useful phenomenon: the model tends to
output high abnormal probabilities over the duration of most
seizures. While this behavior is not necessarily unexpected given
that the weak technician annotations tend to be—but are not
always—near the beginning of a seizure, it suggests that models
weakly supervised with clinician annotations could nonetheless be
useful for measuring seizure duration in addition to performing
seizure detection.
The seizure shown in Fig. 6c illustrates model response to a

relatively subtle focal seizure involving fast spiking activity which
evolves with predominant activity in the right frontal central

Fig. 3 ROC curves and sample scaling results. We plot a median ROC curves when evaluating our model trained on 25,386 weak labels over
60-s and 12-s EEG clips for pediatric patients and b median ROC curves when evaluating our model trained on 32,596 weak labels over 60-s
and 12-s EEG clips for adult patients. We also show model performance versus the number of weak labels used for training over pediatric
patients (c) and adult patients (d) over the 12-s EEG clips. Error bars represent 95% confidence intervals from five training runs with different
random seeds.
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regions, but with a bilateral field. In this case, the model prediction
appears most sensitive to activity in the frontal and central
regions. Encouragingly, the model is able to correctly identify at
least some focal seizures in addition to more obvious generalized
seizures.
The false-positive case of Fig. 6d is a good example of the sort

of rhythmic activity which can fool the model, as its prediction of
seizure probability is consistently in the 0.7–0.9 range. Though this
activity was ultimately judged to be non-ictal by the clinician
reader due to lack of clinical correlate, long-term evolution, and
similarity to interictal activity, over the short term it certainly
displays some ictal characteristics. For instance, if we look closely
at the occlusion map, the highly rhythmic, evolving activity
starting 3 s from the beginning of the clip is most salient in the
model prediction. In a different long-term context, an epileptol-
ogist could well interpret these same features as being indicative
of seizure.
The false-negative of Fig. 6e represents a focal seizure that starts

with rhythmic, slow activity in the frontal regions. While 25 s later
the pattern evolves to clearly have rhythmic sharp activity, which
the model classifies as a seizure, the early activity is more subtle. It
is likely that this case is challenging for the model used in this
work because unlike the human marking the EEGs, the clip-based
model has no ability to resolve ambiguities in early patterns using
information from later time points in the signal. In addition,
rhythmic slowing can not only represent seizure, but also overlaps
with non-ictal patterns such as frontal interictal rhythmic delta

(FIRDA). Such issues could potentially be addressed in future
refinements to the model architecture.
Figure 6f shows an example of an EEG with large amounts of

non-evolving, rhythmic artifact and 60 Hz AC line noise. The model
correctly classifies this as non-ictal. The occlusion analysis
indicates that it weights the channels roughly equally in making
this overall determination. This is an important example because
this EEG pattern is likely to trigger false detection using many of
the baseline methods. In fact, we found that Persyst indeed
incorrectly classified it as a seizure. This true-negative case
indicates the substantial practical utility of a large dataset which
includes multiple examples of artifacts that can often fool both
inexperienced EEG readers and simpler models. Encouragingly,
the true-negative of Fig. 6f also shows few oscillations in the
predicted value as the CNN detector is slid over the signal. Further,
the relatively uniform signal in the occlusion map indicates that
the model is not incorrectly identifying certain areas in this clip as
more seizure-like than others. Overall, close analysis of represen-
tative success and failure modes indicates that the model has
learned features that are indeed meaningful for clinical
interpretation.

DISCUSSION
The results of Table 1 clearly indicate that the CNN model provides
the best seizure onset detection observed in this study for both
12-s and 60-s EEG clips. Indeed, the fact that we observe an 18 F1-

Fig. 4 Generalization performance across pediatric and adult populations.We demonstrate the difference in performance when the model
is trained on the two datasets and tested on the pediatric clips (a, b), and the adult clips (c, d). The orange lines indicate models trained on the
pediatric population, while the blue lines indicate models trained on the adult population.
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point advantage in pediatric populations over systems that are
currently in clinical use suggests that our model could have
substantial clinical utility. One reason why the model presented
here outperforms the baselines so substantially may be the
difference in datasets and tasks considered in the literature when
these baselines were developed. For example, Ullah et al.34 and
Schiratti et al.38 train and test on the same patients using a much
smaller cohort (e.g., 10 patients) rather than on a large cohort with
different patients in the train and test sets. To determine whether
this large difference in performance is at least partially due to the
challenge of cross-patient seizure detection, we trained the same
Random Forest model as in Table 1 on a single patient, and tested
its ability to predict a seizure for that same patient. In this
experiment, the Random Forest model achieved an F1-score of
0.77 when evaluated on the same patient whose data it was
trained on, whereas for the cross-patient task it achieved an F1-
score of only 0.37. These results, along with the error analysis
presented in Fig. 6, suggest that modern deep learning
architectures have the ability to learn features that are more
suitable for cross-patient seizure detection than hand-engineered
alternatives.
Comparing Fig. 3a with Fig. 3b, we also see that the model

trained over the pediatric population achieves significantly higher
performance, by 9 AUROC points, than the model trained over the
adult population for 12-s clips. Possible reasons for this gap could
be (1) the higher prevalence of focal seizure with evolving slowing
over long periods in adults versus more generalized seizures in
pediatrics, which are easier to detect over short periods, (2) signal
differences (e.g., pediatric heads are smaller), and (3) differences in
annotation procedure (e.g., mixture of expertise) between
pediatric and adult hospitals.
To inform an analysis of translational potential, it is useful to

assess specific operating points in addition to aggregate AUROC
values. For instance, a potential operating point in pediatric
patients for fast detection could be the threshold that achieves a
true-positive rate (TPR) of 90% with a false-positive rate (FPR) of
25%, or a TPR of 92% and FPR of 24% for slow detection. This
translates to missing one-tenth of the clips with seizure in a signal
with a quarter of the predicted seizure clips being false-positives.
While such percentages are not clinically acceptable for final
decision making, a model that captures 90% of the seizure clips in
a signal can be of great use to expedite the physician analysis

process. On the other hand, a potential operating point for the
model trained over the adult population for fast detection could
be the threshold that achieves a true-positive rate of 92%, with a
false-positive rate of 35%. For a similar false-positive rate of 25% as
the pediatric model, the true-positive rate would drop down to
64%, which is undesirable. Therefore, assuming we chose the first
operating point, the physician would need to accept 10% more
false-positives for the adult population. However, for slow
detection on adults, we would be able to operate at a TPR of
92% and FPR of 24%, the same as that of pediatrics. While our
trained models perform well on our held-out test sets, a current
limitation is that our dataset consists of EEG signals coming from a
single institution. Therefore, as shown in Fig. 5, such performance
levels may not hold for EEG signals coming from unseen
institutions, perhaps due to variability in sensing equipment or
demographic patient distributions. However, each institution
could use their own weak annotations to train or fine-tune
models optimized for their populations; in practice, this would
require a hospital to either maintain in-house expertise for model
training or supply weakly annotated data to an external vendor. As
is the case with currently deployed systems such as Persyst, robust
procedures for pre-deployment testing and post-deployment
monitoring will be critical to ensure that such models provide
value to both clinicians and patients.
An important result shown in Fig. 4 is that models trained on

adult or pediatric patient populations do not necessarily general-
ize well to one another. Encouragingly, Fig. 5 demonstrates that
transfer learning from large, weakly supervised datasets may help
to improve model performance on new populations. Compelling
directions for further mitigating such generalizability challenges in
future work include multitask learning, data augmentation, and
recent statistical techniques for weak supervision. In multitask
learning, for instance, a model could be designed to also predict
the age of a patient, which would enable the model to learn age-
related features that are useful for seizure detection. In data
augmentation, one might purposely add a wide range of age-
related artifacts, which would enable the model to perform well
on data from a broader population. Recent statistical approaches
to weak supervision, such as the Snorkel framework42, could be
used for model training either by estimating the accuracies of
different annotation sources (i.e., different technicians) or by
integrating additional information contained in free text EEG

Fig. 5 Generalization and transfer learning results across institutions. a We train models using both Stanford and TUH datasets, and
evaluate on the test set from each institution. We show median ROC curves obtained from 5 runs of each model. X–Y stands for trained on X
and evaluated on Y. b We fine-tune our model pre-trained on the large weakly labeled Stanford dataset using the TUH dataset. We compare
the median ROC curves with and without pre-training.
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reports43. Moreover, if annotators in the clinical workflow were to
further standardize their annotations, we may also see an increase
in both the quality of supervision signal and the number of useful
tasks that could be supervised without substantially increasing
workload. Future research on automated seizure detection should
also take the demography-related performance variations
observed for the fast detection task in this work into account.
In this work, we provide evidence that deep learning models for

seizure onset detection can outperform currently deployed clinical
techniques. Our main contribution is the development of such
models using weak annotations, a noisier source of supervision,
instead of manual labels provided by clinicians. The supervision
approach we propose yields high levels of performance compared
to systems currently deployed for clinical use, allows for rapid

training of institution-specific models, supports rapid retraining for
model maintenance in the context of evolving patient demo-
graphics, and yields representations that are useful for transfer
learning across institutions. Since weak annotations are already
collected in the clinical workflow (i.e., are essentially available for
free), our work shows that it is possible to sustain the training of
data-hungry deep-learning models over EEG data that perform
well across patients. While challenges remain in determining the
optimal way to deploy models that vary in performance across
different patient subpopulations, modern methods such as data
augmentation, transfer learning, and multitask learning may offer
a way forward. In the future, we will experiment with using models
such as graph neural networks (which are naturally suited to the
EEG domain), integrate additional temporal information using

Fig. 6 Representative cases for true-positive, false-positive, false-negative, and true-negative. Green background represents successful
cases, while the red background represents failure cases. The EEG clips are shown and overlaid with an occlusion map. To the left of the clip is
a plot indicating the model prediction values in the vicinity of the clip, where the clip is highlighted by the blue rectangles. Note that
occlusion map values are normalized within each image, meaning that values should not be compared across images.
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recurrent neural networks, assess our ability to build models that
classify seizure subtypes in addition to performing detection,
analyze model performance by demographic in a more fine-
grained manner, and assess generalizability of our approach
across multiple institutions.

METHODS
Datasets
Patient data collection for this study was approved by the Stanford
University Institutional Research Board under protocol IRB-37949. A waiver
of consent was granted based upon the findings of minimal risks to patient
welfare or rights and the impracticality of obtaining consent retro-
spectively for thousands of patients in studies occurring over many years.
We collected two large scalp EEG datasets from our institution to evaluate
how deep learning models perform when supervised with archived weak
labels. The first dataset we collected contains 5,076 unique pediatric
patients with 36,644 EEG signals from the Lucile Packard Children’s
Hospital, where each EEG signal is an average of 43.8 h in duration and was
annotated by a mixed group of technicians, fellows, students, and boarded
epileptologists in a freeform manner, which included the annotation of
possible seizures via stereotyped text such as seizure inserted at a specific
time in the record. While these annotation times are not gold-standard
labels, they are already provided as part of the standard clinical workflow.
Our second dataset has 7,363 unique adult patients with 99,721 EEG
signals from Stanford Hospital, where each EEG signal is an average of
22.6 h in duration and also contains weak annotations of seizure times. We
observed a strong—but not absolute—tendency for these annotations to
come near the onset of seizures.
The EEG signals in these datasets cover the past 12 years of clinical

practice at our institution; as such, they encompass all seizure types
encountered at a Level 4 pediatric and adult epilepsy center with
associated hospitals that treat high-acuity patients in neonatal, pediatric
and adult intensive care units.
For both adult and pediatric populations, we curated development and

test datasets where seizure onset times were determined by a fellowship-
trained EEG reader with board certification in epilepsy (CLM). CLM further
analyzed the medical reports in every EEG signal used in each test set to
characterize the seizure types, seizure locations, recording locations,
seizure etiologies, and medications in use. Seizure types and etiologies
were determined based upon the latest ILAE guidelines (see Supplemen-
tary Note 2 for details)44. Additionally, we calculated statistics on each
weakly labeled training dataset, such as the distributions of gender, age,
number of EEG signals per patient, and duration of the EEG signals (Fig. 2,
Supplementary Fig. 2).
To ensure consistency across EEG signals, each of which could have a

unique sensor alignment, we use only signals from the 19 electrodes in the
standard 10–20 International EEG configuration, which form a subset of the
electrodes deployed to every patient at our institution. This excludes
premature infants and patients with small heads or injuries which prevent
full deployment of these 19 electrodes. Infants whose heads could
accommodate the full 19 electrode montage were included. Voltage
readings from each channel are sampled at 200 Hz.
We transform the seizure onset detection problem into a clip-level

classification problem over 12-s and 60-s clips. It is worth noting that clip
length could be further optimized via hyperparameter search, but this was
not a focus of our study. Our models either map an input, x 2 R2400 ´ 19

(12-s clips are sampled at 200 Hz over 19 leads) or x 2 R12000 ´ 19 (for 60-s
clips), to a scalar output y indicating the probability of seizure onset in that
clip. For negative labels, we sample random EEG clips from signals that do
not have any technician-provided annotation times. Since there are many
more cases without seizures than with seizures (roughly an 80–20 class
balance percentage), we balance the training set by undersampling the
negative examples. We had EEG readers label for 12 h and ended up with
~100 positive examples (80 and 98, respectively) for adult and pediatric
populations. We then balanced the test set to have 80–20 negative-
positive balance, to reflect the relative rarity of seizures. For the pediatric
dataset, we are left with 25,386 class-balanced EEG clips for training, and
498 EEG clips with gold-standard labels. For the adult dataset, we are left
with 32,596 class-balanced EEG clips for training, and 480 EEG clips with
gold-standard labels. The total combined EEG signals for pediatrics and
adults used for training is 72,628.

For models trained on the publicly available TUH dataset, we used
version 1.4 of the dataset, which includes a training set and an evaluation
set. The training set is composed of 1984 EEG signals coming from 264
patients, and contained a total of 1,327 seizure clips. In the evaluation set,
which was split evenly between validation and test, there are 1,013 EEG
files from 50 patients, which have a total of 685 seizure clips. To evaluate
our Stanford model on the TUH dataset and vice-versa, we ensured that
the input data to the models were the same with respect to the EEG leads
used and the samples per EEG lead. Since the Stanford data were sampled
at 200 Hz and TUH signals were sampled at varying frequencies (256 Hz,
512 Hz, etc.), we resampled all TUH signals to 200 Hz using resample
function in the resampy python library with the Kaiser best windowing
technique. We did not de-reference signals from TUH.

Performance metrics
To assess how well the different models in this work can detect seizures,
we computed a number of metrics, which include precision, recall (also
known as sensitivity or true-positive rate), F1-score, and false-positive rate
(FPR) as defined in the below equations.

Precision ¼ TP
TP þ FP

(1)

Recall ¼ TP
TP þ FN

(2)

F1 score ¼ 2 ´
precision ´ recall
precision þ recall

(3)

FPR ¼ FP
FP þ TN

(4)

Here, true-positives (TP) are correct seizure predictions, true-negatives
(TN) are correct non-seizure predictions, false-positives (FP) are incorrect
seizure predictions, and false-negatives (FN) are incorrect non-seizure
predictions.
Another metric used is the Area Under the Receiver Operating

Characteristic curve (AUROC), where the ROC curve is the recall plotted
as a function of the FPR for different cutoff values. Therefore, the AUROC is
a more holistic measure of how well a model can distinguish between
seizure clips and non-seizure clips regardless of the specific cutoff chosen
for classification.

Network architecture
We use a densely connected inception architecture inspired by Roy et al.45

for seizure onset detection. This modeling approach combines the most
compelling aspects of deep inception46 networks and densely connected
network47 architectures. Each Inception block, which consists of three
convolutional filters with different kernel sizes, is fully connected with
other Inception blocks. The model consisted of 8 inception layers followed
by two fully connected layers, which resulted in 12,677,803 parameters.
Details on the exact model architecture can be found in the Supplemen-
tary Methods.

Model training
Model training for all models is accomplished using the Adam optimizer in
PyTorch, with randomly initialized weights. The learning rate is initially set
to a value of 10�6 and reduced by a factor of 2 every 10 epochs, and a
dropout probability of 0.2 is applied to the last layer. The initial learning
rate and dropout probability were found by running a random
hyperparameter search and selecting the best values when evaluated on
the development set. The plentiful negative examples were under-
sampled such that the training set contained 50% positive examples.
Batch size was set at 10 EEG signals, the maximum possible (due to
memory constraints) for the limiting slow-detection case using the single
Titan RTX GPU that was used to train each model. Training each model on
the full set of signals for 25 epochs took approximately 12 h for the large
weakly labeled dataset on 12-s clips, 44 h on the 60-s clips, and 7min for
the small gold-labeled dataset on 12-s clips, and around 26min on the
60-s clips.
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