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Abstract

In real-world classification tasks, each class often comprises multiple finer-grained “subclasses.” As
the subclass labels are frequently unavailable, models trained using only the coarser-grained class labels
often exhibit highly variable performance across different subclasses. This phenomenon, known as hidden
stratification, has important consequences for models deployed in safety-critical applications such as
medicine. We propose George, a method to both measure and mitigate hidden stratification even
when subclass labels are unknown. We first observe that unlabeled subclasses are often separable in the
feature space of deep models, and exploit this fact to estimate subclass labels for the training data via
clustering techniques. We then use these approximate subclass labels as a form of noisy supervision in a
distributionally robust optimization objective. We theoretically characterize the performance of George in
terms of the worst-case generalization error across any subclass. We empirically validate George on
a mix of real-world and benchmark image classification datasets, and show that our approach boosts
worst-case subclass accuracy by up to 22 percentage points compared to standard training techniques,
without requiring any information about the subclasses.

1 Introduction

In many real-world classification tasks, each labeled class consists of multiple semantically distinct subclasses
that are unlabeled. Because models are typically trained to maximize global metrics such as average
performance, they often underperform on important subclasses [52, 40]. This phenomenon—recently termed
hidden stratification—can lead to skewed assessments of model quality and result in unexpectedly poor
performance when models are deployed [36]. For instance, a medical imaging model trained to classify
between benign and abnormal lesions may achieve high overall performance, yet consistently mislabel a rare
but critical abnormal subclass as “benign” [17].

Modern robust optimization techniques can improve performance on poorly-performing groups when the group
identities are known [43]. However, in practice, a key obstacle is that subclasses are often unlabeled, or even
unidentified. This makes even detecting such performance gaps—let alone mitigating them—a challenging
problem. Nevertheless, recent empirical evidence [36] encouragingly suggests that feature representations of
deep neural networks often carry information about unlabeled subclasses (see Figure 1). Motivated by this
observation, we propose a method for addressing hidden stratification, by both measuring and improving
worst-case subclass performance in the setting where subclass labels are unavailable. Our work towards this
is organized into four main sections.

First, in Section 3 we propose a simple generative model of the data labeling process. Using this model, we
show that when label annotations are insufficiently fine-grained—as is often the case in real-world datasets—
hidden stratification can naturally arise. For instance, an image classification task might be to classify birds
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vs. frogs; if labels are only provided for these broad classes, they may fail to capture visually meaningful
finer-grained, intra-class variation (e.g., “bird in flight” versus “bird in nest”). We show that in the setting of
our generative model, standard training via empirical risk minimization (ERM) can result in arbitrarily poor
performance on underrepresented subclasses.

Figure 1: Benign class examples in the feature space
of a model classfying skin lesions as benign or malig-
nant. Benign examples containing a brightly colored
patch (blue) and those without a patch (red) are sep-
arable in model feature space, even though the labels
do not specify the presence of patches.

Second, in Section 4 we use insights from this genera-
tive model to motivate George, a two-step procedure
for alleviating hidden stratification by first estimating the
subclass labels and then exploiting these estimates to train
a robust classifier. To estimate subclass labels, we train
a standard model on the task, and split each class (or
“superclass,” for clarity) into estimated subclasses via un-
supervised clustering in the model’s feature space. We
then exploit these estimated subclasses by training a new
model to optimize worst-case performance over all es-
timated subclasses using group distributionally robust
optimization (GDRO [43]). In this way, our framework
allows ML practitioners to automatically detect poorly-
performing subclasses and improve performance on them,
without needing to resort to expensive manual relabeling
of the data.

Third, in Section 5 we use our generative framework to
prove that—under conditions on the data distribution and the quality of the recovered clusters—George can
reduce the subclass performance gap, attaining the same asymptotic sample complexity rates as if the true
subclass labels were known.

Fourth, in Section 6 we empirically validate the ability of George to both measure and mitigate hidden
stratification on four image classification tasks, comprising both robustness benchmarks and real-world
datasets. We demonstrate that the first step of George—training an ERM model and clustering the
superclass features—often recovers clusters that align closely with true subclasses. We evaluate the ability of
these clusters to measure the worst-case subclass (i.e., “robust”) performance: on average, the gap between
worst-case cluster performance and worst-case subclass performance is less than half the gap between overall
and worst-case subclass performance, indicating that George enables more accurate measurement of robust
performance. Next, we show that the second stage of George—retraining a robust model using cluster
assignments as proxy subclass labels—reduces average worst-case subclass error rates by 22% on these
datasets. For comparison, the state-of-the-art “oracle” GDRO method that does require subclass labels [43]
reduces average worst-case subclass error rates by 51%. As an extension, we show that leveraging recent
pretrained image embeddings [27] for clustering can substantially further improve the robust performance of
George, in some cases to nearly match the performance of GDRO trained using the true subclass labels.

2 Background

2.1 Related Work

Our work builds upon prior work from three main areas: robust optimization, representation learning, and
unsupervised clustering. We provide a more extensive discussion of related work in Appendix A.

Distributionally Robust Optimization Robustness and fairness is an active research area in machine
learning [4, 21, 30, 26]. Distributionally robust optimization (DRO) attempts to guarantee good performance
in the presence of distribution shift, e.g., from adversarial perturbations [49, 47] or evaluation on arbitrary
subpopulations [16]. Because these notions of robustness can be pessimistic [23], others investigate group
DRO (GDRO), which optimizes worst-case performance over a known set of subgroups [23, 43]. A major
obstacle to applying GDRO methods in practice is that subgroup labels are often unavailable; in our work,
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we aim to address this issue in the classification setting.

Representation Learning & Clustering Our approach relies on estimating unknown subclass labels by
clustering a feature representation of the data. Techniques for learning semantically useful image features
include autoencoder-based methods [32, 46], the use of unsupervised auxiliary tasks [2, 9], and pretraining
on massive datasets [27]. Such features may be used for unsupervised identification of classes, either using
clustering techniques [6] or an end-to-end approach [25, 18]. It has also been observed that when a model is
trained on coarse-grained class labels, the data within each class can often be separated into distinct clusters
in model feature space (e.g., [36]). While we primarily focus on the latter approach, we also evaluate the
utility of pretrained embeddings as a source of features for clustering.

2.2 Problem Setup

We are given n datapoints x1, . . . , xn ∈ X and associated superclass labels y1, . . . , yn ∈ {1, . . . , B}. In
addition, each datapoint xi is associated with a latent (unobserved) subclass label zi ∈ {1, . . . , C}. We assume
that {1, . . . , C} is partitioned into disjoint sets S1, . . . , SB such that if zi ∈ Sb, then yi = b; in other words,
the subclass label zi determines the superclass label yi. Let Sb denote the set of all subclasses comprising
superclass b, and S(c) denote the superclass corresponding to subclass c.

Our goal is to classify examples from X into their correct superclass. Given a function class F , it is typical to
seek a classifier f ∈ F that maximizes overall population accuracy:

argmax
f∈F

E(x,y) [1(f(x) = y)] . (1)

By contrast, we seek to maximize the robust accuracy, defined as the worst-case expected accuracy over all
subclasses:

argmax
f∈F

min
c∈{1,...,C}

E(x,y)|z=c [1(f(x) = y)] . (2)

Note that y is fixed conditional on the value of z. As we cannot directly optimize the population accuracy,
we select a surrogate loss function ` and attempt to minimize this loss over the training data. For instance,
the standard ERM approach to approximate (1) minimizes the empirical risk (loss) R(f):

argmin
f∈F

{
R(f) := 1

n

n∑
i=1

`(f(xi), yi)

}
. (3)

To approximate (2), if we knew z1, ..., zn we could minimize the worst-case per-subclass training loss by
solving:

argmin
f∈F

{
Rrobust(f) := max

c∈{1,...,C}
1
nc

n∑
i=1

1(zi = c)`(f(xi), yi)

}
, (4)

where nc =
∑n
i=1 1(zi = c) is the number of training examples from subclass c. Rrobust(f) is the “robust loss”

achieved by f . Our goal is to learn a model f̃ ∈ F such that Rrobust(f̃)−min
f∈F

(Rrobust(f)) is small with high

probability. When the zi’s are known, Eq. (4) can be tractably optimized using GDRO [23, 43]. However,
we do not assume access to the zi’s; we seek to approximately minimize Rrobust without knowledge of the
subclass labels.

3 Modeling Hidden Stratification

In Section 3.1, we introduce a generative model of the data labeling process. In Section 3.2, we use this
model to explain how hidden stratification can occur, and show that in the setting of this model ERM can
attain arbitrarily poor robust risk compared to DRO.
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Figure 2: (a) Generative model of hidden stratification: attributes Z determine features ~V and labels Y ; mapping g
transforms ~V to yield observed data X. (b) On the Waterbirds dataset [43], attributes (Z1, Z2) denote species and
background type respectively; the label Y is the species type.

3.1 A Model of the Data Generating and Labeling Process

In real datasets, individual datapoints are typically described by multiple different attributes, yet often only
a subset of these are captured by the class labels. For example, a dataset might consist of images labeled
“cat” or “dog.” These coarse class labels may not capture other salient attributes (color, size, breed, etc.);
these attributes can be interpreted as latent variables representing different subclasses.

We model this phenomenon with a hierarchical data generation process. First, a binary vector ~Z ∈{−1,+1}k
is sampled from a distribution p(~Z). Each entry Zi is an attribute, while each unique value of ~Z represents
a different subclass. Then, a latent “feature vector” ~V ∈ Rk is sampled from a distribution conditioned on
~Z. Specifically, when conditioned on Zi, each individual feature Vi is Gaussian and independent of the Zj ’s
with j > i. Finally, the datapoint X ∈ X is determined by the latent features ~V via a fixed map g : Rk → X .
Meanwhile, the superclass label Y is equal to h(~Z), where h is a fixed discrete-valued function. In particular,
h may only depend on a subset of the Zi attributes; the Zi’s which do not influence the label Y correspond
to hidden subclasses. X,Y are observed, while ~V , ~Z are not. Figure 2a illustrates this generative process;
Figure 2b presents an analogue on the Waterbirds dataset [43].

A key assumption is that the subclasses are “meaningful” in some sense, rather than just arbitrary groups of
datapoints. Thus, rather than attempting to enforce good performance on all possible subsets of the data,
we assume some meaningful structure on the subclass data distributions. We model this via the Gaussian
assumption on p(Vi|~Z), which is similar to that often made for the latent space of GANs [5]. Consequently,
the data distribution is a mixture of Gaussians in “feature space,” which facilitates further theoretical analysis
(Section 5). Our generative model also bears similarity to that of [23], who use a hierarchical data-generation
model to analyze the behavior of DRO methods in the presence of distribution shift.

3.2 What Causes Hidden Stratification, and When Can It Be Fixed?

We now use our generative model to help understand why hidden stratification can occur, and present a
simple example in which ERM is provably suboptimal in terms of the robust risk.

We distinguish between two main causes of hidden stratification: inherent hardness and dataset imbalance.
First, certain subclasses are “inherently harder” to classify because they are more similar to other superclasses.
We define the inherent hardness of a task as the minimum attainable robust error; inherent hardness thus
lower bounds the worst-case subclass error of any model. See Appendix D for more discussion.

Second, imbalance in subclass sizes can cause ERM to underserve rare subclasses, since it optimizes for
average-case performance. We provide a simple concrete example (3.1) below. Unlike inherent hardness,
robust performance gaps arising from dataset imbalances can be resolved if subclass labels are known, by
using these labels to minimize Eq. (4) via GDRO.

Example 3.1 Figure 3 depicts an example distribution generated by the model in Section 3.1. In this
example, the binary attribute vector ~Z has dimension 2, i.e., ~Z = (Z1, Z2), while only Z2 determines the
superclass label Y , i.e., Y = Z2. The latent attribute Z1 induces two subclasses in each superclass, each
distributed as a different Gaussian in feature space, with mixture proportions α and 1− α respectively. For
linear models with regularized logistic loss, as the proportion α of the rare subclasses goes to 0, the worst-case
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Figure 4: Schematic describing George. The inputs are the datapoints and superclass labels. First, a model is
trained with ERM on the superclass classification task. The activations of the penultimate layer are then dimensionality-
reduced, and clustering is applied to the resulting features to obtain estimated subclasses. Finally, a new model is
trained using these clusters as groups for GDRO.

subclass accuracy of ERM is only O(α), while that of GDRO is 1−O(α). (See Appendix D.1 for the specific
parameters of the per-subclass distributions in this example and a proof of the claim.)

ERM decision boundary

GDRO decision boundary

Rare subclass

Rare subclass

Figure 3: As α→0 in Example 3.1, top-left & lower-
right subclasses get rarer and are misclassified by
ERM (black boundary), whereas GDRO learns the
optimal robust boundary (green) to classify red vs.
blue superclasses.

Example 3.1 illustrates that when the dataset is
imbalanced—i.e., the distribution of the underlying at-
tributes ~Z is highly nonuniform—knowledge of subclass
labels can improve robust performance. We thus ask: how
well can we estimate subclass labels if they are not pro-
vided? In the extreme, if two subclasses of a superclass
have the same distribution in feature space, we cannot
distinguish them. However, the model must then perform
the same on each subclass, since its prediction is a fixed
function of the features! Conversely, if one subclass has
higher average error, it must lie “further across” the deci-
sion boundary, meaning that the two subclasses must be
separable to some degree; the larger the accuracy gap, the
more separable the subclasses are. We formalize this in
Appendix D.3.

4 George: A Framework for Mitigating Hidden Stratification

Inspired by the insights of Section 3, we propose George, an algorithm to mitigate hidden stratification. A
schematic overview of George is provided in Figure 4.

Under the generative model of Section 3.1, each subclass is described by a different Gaussian in latent feature
space. This suggests that a natural approach to identify the subclasses is to transform the data into feature
space, and then cluster the data into estimated subclasses. However, this feature space is unknown. To obtain
a surrogate for this feature space, we leverage the empirical observation that feature representations of deep
neural networks trained on a superclass task can carry information about unlabeled subclasses [36]. Next, to
improve performance on these estimated subclasses, we minimize the maximum per-cluster average loss, by
using the clusters as groups in the GDRO objective [43]. We provide more details below, and pseudocode in
Appendix B (Algorithm 1).

4.1 Step 1: Estimating Approximate Subclass Labels

In the first step of George, we train an ERM model on the superclass task and cluster the feature
representations of each superclass to generate proxy subclass labels. Formally, we train a deep neural network
L ◦ fθ to predict the superclass labels, where fθ : X → Rd is a parametrized “featurizer” and L : Rd → ∆B

outputs classification logits. We then cluster the features output by fθ for the data of each superclass into
k clusters, where k is chosen automatically. To each datapoint xi in the training and validation sets, we
associate its cluster assignment z̃i ∈ {1, . . . , k}. We use the z̃i’s as surrogates for the true subclass labels zi.
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4.1.1 Clustering Details

In practice, we apply UMAP dimensionality reduction [33] before clustering, as we find it improves results
(Appendix B). Additionally, based on the insight of Section 3.2 that subclasses with high loss differences are
more separable, we also use the loss component (i.e., the component of the activation vector orthogonal to
the decision boundary) as an alternative representation.

We first tried using standard clustering methods (such as k-means and Gaussian mixture model clustering)
in our work. By visual inspection, we found that these methods often failed to capture smaller clusters,
even if they were well-separated. However, missing small clusters like this is problematic for George, since
these small clusters frequently correspond to rare, low-performing subclasses. Additionally, these methods
require specification of k. We apply over-clustering (clustering using a larger k) to remedy this problem in an
efficient manner. Naive overclustering also has drawbacks as it still requires manual specification of k, and if
k is set too large, several clusters can be spurious and result in overly pessimistic and unstable measurements
of robust performance (as we explore in Appendix C.2.5). Thus, we develop a fully automated criterion based
on the commonly used Silhouette (SIL) criterion [42] to search for the number of clusters k, over-cluster to
find smaller clusters that were missed, and filter out the spurious overclusters. Empirically, our clustering
approach significantly improves performance over “vanilla” clustering; we hope that it may be of independent
interest as well. We describe our procedures in more detail in Appendix B.

k and other clustering and dimensionality reduction hyperparameters are selected automatically based on an
unsupervised SIL criterion [42] as described further in Appendix B.

4.2 Step 2: Exploiting Approximate Subclass Labels

In the second step of George, we use the GDRO algorithm from [43] and our estimated subclass labels
z̃i to train a new classifier with better worst-case performance on the estimated subclasses. Given data
{(xi, yi, ti)}ni=1 and loss function `, GDRO minimizes max

t∈T
E

x,y∼P̂t
[`((L ◦ fθ)(x), y)] with respect to parameters

(L, θ), where T is the discrete set of groups and P̂t is the empirical distribution of examples from group t. This
coincides with the true objective (4) when the true subclass labels zi are used as the group labels ti. In our case,
we use the cluster assignments z̃i as the group labels instead, i.e., minimize max

1≤z̃≤k
E

x,y∼P̂z̃
[`(L ◦ fθ)(x), y)].1

Similarly, using the clusters fit on the training set, we generate cluster assignments for the validation set
points and use these to compute the validation worst-case per-cluster performance. George uses this metric,
rather than overall validation performance, to select the best model checkpoint over the training trajectory.

5 Analysis of George

We now analyze a simple mixture model data distribution, based on the generative model presented in
Section 3.1. We show that in this setting, unlike ERM, George converges to the optimal robust risk at the
same sample complexity rate as GDRO when it is able to recover the true latent features ~Z. Specifically,
Example 3.1 shows that the robust risk of ERM can be arbitrarily worse than that of GDRO for data
generated according to the generative model in Section 3.1. By contrast, if the subclass labels estimated
by George are sufficiently accurate, then the objective minimized in Step 2 of George well approximates
the true GDRO objective (4). In Theorem 1, we use this to show that, when each subclass is described by
a different Gaussian in feature space, George achieves the same optimal asymptotic sample complexity
rates as GDRO trained with true subclass labels. We sketch the argument below; full proofs are deferred to
Appendix D.

First, suppose we could compute the true data distribution P(x, y, z). Our goal is to minimize the maximum
1In Appendix D, we present an extension to the GDRO algorithm of [43] to handle the case where the group assignments z̃i

can be probabilistic labels in ∆k, instead of hard labels in {1, . . . , k}.
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per-subclass training loss by solving Eq. (4). Even with infinite data, we cannot estimate the individual zi’s
to arbitrary accuracy, so we cannot directly compute the objective in (4). However, we can estimate the
per-subclass losses as follows: for each training example (xi, yi), we use P to compute the probability that it
comes from subclass c, and use that to weight the loss corresponding to that example. In Lemma 1, we show
that when the training data is randomly sampled from P, this yields an unbiased estimate of the average
per-subclass empirical risk.

Lemma 1. Let Rc be the sample average loss of examples in subclass c. Let w(x, c) := P(x|z=c)
P(x|y=S(c)) . Let R̃c

be the sample average of w(xi, c)`(f(xi), yi) over all examples xi with superclass label yi = S(c). Then R̃c is
an unbiased estimate of Rc, and their difference converges to 0 at O(1/

√
n).

In practice, we do not have access to the true distribution P, so we estimate it with P̂, computed from data.
Thus, the weights w(x, c) are replaced by weights ŵ(x, c) estimated from P̂ , leading to an estimate R̂c of the
quantity R̃c defined in Lemma 1. Nevertheless, if we can bound the total variation estimation error of P̂ , we
can use this to bound the error in this loss estimate, as shown in Lemma 2 (Appendix D). In Theorem 1, we
leverage Lemma 2 and recent results on learning Gaussian mixtures [3] to show that, when each subclass is
described by a different Gaussian, P̂ can be estimated well enough so that the minimizer of the perturbed
robust loss converges to the minimizer of the true robust loss at the optimal sample complexity rate.

Theorem 1. Let R̂robust := maxc R̂c. Suppose `, f are Lipschitz, f has bounded parameters, and P(x|z = c)

is Gaussian and unique for each subclass c. Then, if we estimate P̂ using the algorithm from [3], f̂ :=

min
f∈F

R̂robust(f) satisfies Rrobust(f̂)−min
f∈F

Rrobust(f) ≤ Õ(
√

1/n) w.h.p.

Theorem 1 implies that if each subclass is Gaussian in feature space, and we have access to this feature space
(i.e., we can invert the mapping g from features ~Z to data X), we can cluster the features to estimate P̂,
and the robust generalization performance of the model that minimizes the resulting perturbed training loss
R̂robust scales the same as does that of the minimizer of the true robust training loss Rrobust, in terms of the
amount of data required. This underscores the importance of recovering a “good” feature space; empirically,
we show in Appendix C that the choice of model architecture can indeed dramatically impact the model
feature space and thus the ability to recover subclasses.

6 Experiments

We empirically validate that George can mitigate hidden stratification across four datasets. In Section 6.2,
we show that when subclass labels are unavailable, George improves robust performance over standard
training methods. In Section 6.3, we analyze the clusters returned by George to understand the reasons for
this improvement; we confirm that George identifies clusters that correspond to poorly-performing subclasses,
which enables accurate measurement of robust performance. In Section 6.4, we ablate the contributions that
George’s robust training objective and George’s improved measurement of validation robust performance
each make to the performance gains of George. Finally, in Section 6.5, we evaluate the use of recent
pretrained image embeddings [27] as a source of features for George, and find that this further improves
performance of George on some applications. Additional details on datasets, model architectures, and
experimental procedures are provided in Appendix B.

6.1 Datasets

Waterbirds Waterbirds, a robustness benchmark introduced to evaluate GDRO in [43], contains images
of land-bird and water-bird species on either land or water backgrounds. The task is to classify images as
“land-bird” or “water-bird”; however, 95% of land (water)-birds are on land (water) backgrounds, causing
ERM to frequently misclassify both land-birds on water and water-birds on land.
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Method Requires Metric Waterbirds U-MNIST ISIC CelebA
Subclass Labels? Type Non-patch Histopath.

ERM 7 Robust 63.3(±1.6) 93.9(±0.6) .922(±.003) .875(±.005) 40.3(±2.3)
Overall 97.3(±0.1) 98.2(±0.1) .957(±.002) 95.7(±0.0)

George (ours) 7 Robust 76.2(±2.0) 95.7(±0.6) .912(±.005) .876(±.006) 53.7(±1.3)
Overall 95.7(±0.5) 97.9(±0.2) .927(±.008) 94.6(±0.2)

Subclass-GDRO 3 Robust 90.7(±0.4) 96.8(±0.4) .923(±.003) .875(±.004) 89.3(±0.9)
Overall 92.7(±0.4) 98.0(±0.3) .933(±.005) 92.8(±0.1)

Table 1: Robust and overall performance for ERM, George, and subclass-GDRO (i.e., GDRO with true subclass
labels). Performance metric is accuracy for all datasets but ISIC, which uses AUROC. Bolded values are best between
ERM and George, which do not require subclass labels. Sub-columns for ISIC represent two different definitions of
the ISIC subclasses; see Section 6.3.

Undersampled MNIST (U-MNIST) We design U-MNIST as a modified version of MNIST [28], where
the task is to classify digits as ‘<5’ and ‘≥5’ (digits 0-9 are the subclasses). In addition, we remove 95% of
‘8’s; due to its rarity, it is challenging for ERM to perform well on the ‘8’ subclass.

CelebA CelebA is a common face classification dataset also used as a robustness benchmark in [43]. The
task is to classify faces as “blond” or “not blond.” Because only 6% of blond faces are male, ERM performs
poorly on this rare subclass.

ISIC The ISIC skin cancer dataset [12] is a public real-world dataset for classifying skin lesions as “malignant”
or “benign.” 48% of benign images contain a colored patch. Of the non-patch examples, 49% required
histopathology (a biopsy) to diagnose. We report AUROC for ISIC, as is standard [41].

6.2 End-to-End Results

We first show that George substantially improves the worst-case subclass accuracy, while modestly affecting
overall accuracy. (Recall that we refer to worst-case subclass accuracy as “robust accuracy” [Eq. (2)].) We
train models on each dataset in Section 6.1 using (a) ERM, (b) George, and (c) GDRO with true subclass
labels (“Subclass-GDRO”), and report both robust and overall performance metrics in Table 1. Compared to
ERM, training with George substantially improves robust accuracy, reducing the gap between the robust
error of the ERM model and that of the subclass-GDRO model—despite the fact that George does not
require subclass labels. In Appendix C, we show that George also outperforms other subclass-agnostic
baselines, such as GDRO trained using the superclasses as groups.

On Waterbirds, U-MNIST, and CelebA, George significantly improves worst-case subclass accuracy over
ERM. On ISIC, all methods perform similarly in terms of both AUROC on the non-patch subclass and
AUROC on the clinically meaningful histopathology subclass. On CelebA, although George improves
upon ERM, it substantially underperforms subclass-GDRO. However, this gap can be closed when improved
features are used: if we cluster pretrained BiT embeddings [27] rather than ERM features and use the
resulting cluster assignments for the second stage of George, the robust accuracy improves to nearly match
that of subclass-GDRO. We describe this experiment further in Section 6.5.

In terms of overall performance, ERM generally performs best (as it is designed to optimize for average-case
performance), followed by George and then subclass-GDRO. However, this difference is generally much
smaller in magnitude than the increase in robust performance.

6.3 Clustering Results

Step 1 of George is to train an ERM model and cluster the data of each superclass in its feature space.
We analyze these clusters to better understand George’s behavior. First, in Section 6.3.1 we show that
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George finds clusters that align well with poorly-performing human-labeled subclasses. This helps explain
why the second step of George, running GDRO using the cluster assignments as groups, improves performance
on these subclasses (as demonstrated in Section 6.2). Next, in Section 6.3.2 we show that George can
discover meaningful subclasses that were not labeled by human annotators. Finally, in Section 6.3.3 we show
that the worst-case performance measured on the clusters returned by George is a good approximation of
the true robust performance.

6.3.1 Subclass Recovery

We evaluate the ability of George to identify clusters that correspond to the true subclasses. We focus
on identification of poorly-performing subclasses, as these determine robust performance. In Table 2, we
compute the precision and recall of the cluster returned by George that most closely aligns with each
given subclass. Precision is the fraction of cluster examples with that subclass label; recall is the fraction of
subclass examples assigned to the cluster. For each poorly-performing subclass, George identifies a cluster
with high recall and better-than-random precision.

We note that the lower recall on ISIC is because the no-patch subclass is often split into multiple clusters;
in fact, this subclass is actually composed of two semantically distinct groups as discussed below. If these
sub-clusters are combined into one, the precision and recall of the resulting cluster at identifying no-patch
examples are > 0.99 and > 0.97 respectively.

6.3.2 Unlabeled Subclass Discovery

In addition to yielding clusters aligned with human-annotated subclasses, our procedure can identify semanti-
cally meaningful subclasses that were not specified in the human-provided schema. On U-MNIST, 60% of
trials of George partition the “7” subclass into two subclusters, each containing stylistically different images
(Figure 6c, Appendix C). On ISIC, 70% of George trials reveal distinct benign clusters within the no-patch
subclass (see Figure 6g-i). In these trials, at least 77% of images in one of these no-patch clusters required
histopathology (biopsy & pathologist referral), while such images made up <7% of each other cluster. In
other words, the no-patch subclass split into “histopathology” and “non-histopathology” clusters, where the
former datapoints were harder for clinicians to classify. We comment on the real-world importance of this
result in the Broader Impacts section.

Task Subclass Subclass Prevalence % of trials Precision Recall

U-MNIST “8” digit 0.012 80 0.54 0.74
Waterbirds Water-birds on land 0.05 100 0.19 0.91
Waterbirds Land-birds on water 0.05 100 0.33 0.93
ISIC No-patch 0.48 100 0.99 0.59
ISIC Histopathology 0.23 70 0.77 0.92
CelebA blond males 0.06 100 0.14 0.88
CelebA (w/BiT) blond males 0.06 100 0.93 0.68

Table 2: Alignment of clusters with poorly-performing subclasses on the train set. We run Step 1 of George over
multiple random seeds (i.e., train multiple ERM models and cluster their activations). In col. 4, we report the
percentage of these trials with a cluster above the given precision and recall thresholds (cols. 5, 6) for identifying the
subclass in col. 2. We report the proportion of training examples from that subclass within its superclass in col. 3.

6.3.3 Estimating Robust Accuracy

We show that the clusters returned by George enable improved measurement of worst-case subclass perfor-
mance. Specifically, we measure the worst-case performance across any cluster returned by George (which
we call the “cluster-robust” performance) and compare this to the true robust performance and the overall
performance. We present results for both ERM and George in Table 3. In most cases, the cluster-robust
performance is much closer to the true robust performance than the overall performance is. On ISIC,
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cluster-robust performance even yields a better estimate of robust performance on the histopathology subclass
than does performance on the patch/no-patch subclass. By comparing cluster-robust performance to overall
performance, we can detect hidden stratification (and estimate its magnitude) without requiring subclass
labels.

Method Metric Waterbirds U-MNIST ISIC CelebA
Type Non-patch Histopath.

ERM Robust 63.3(±1.6) 93.9(±0.6) .922(±.003) .875(±.005) 40.3(±2.3)
Cluster-Robust 76.8(±1.4) 92.3(±2.5) .893(±.013) 56.7(±2.5)

Overall 97.3(±0.1) 98.2(±0.1) .957(±.002) 95.7(±0.1)

George Robust 76.2(±2.0) 95.7(±0.6) .912(±.005) .876(±.006) 53.7(±1.3)
Cluster-Robust 78.3(±1.1) 93.5(±1.9) .897(±.011) 70.8(±1.1)

Overall 95.7(±0.5) 97.9(±0.2) .927(±.008) 94.6(±0.2)

Table 3: Comparison of overall, cluster-robust, and robust performance.2(Conventions as in Table 1.)

In addition, improvements in robust performance from George compared to ERM are accompanied by
increases in cluster-robust performance; by comparing the cluster-robust performance of ERM and George,
we can estimate how much George improves hidden stratification.

6.4 Effects of Validation Metric

George’s improvement of robust performance has two potential explanations: (1) minimizing the cluster-
robust training loss is a better surrogate objective for the true robust performance than minimizing the overall
training loss, and (2) selecting the best model checkpoint based on validation cluster-robust performance is
better than selecting based on overall validation performance. To decouple these two effects, in Table 4 we
display the test robust performance for ERM and George when using the true robust validation performance
as a checkpointing metric. This change generally improves performance for both methods, but George still
significantly outperforms ERM on all datasets except ISIC. This shows that, for the goal of maximizing
robust performance, the GDRO objective with cluster labels indeed performs better than the ERM objective.

In Table 4, we also display the effects of changing the frequencies of subclasses in the validation set. As
described in Appendix B.2, by default we re-weight the validation and test sets of U-MNIST and Waterbirds
so that the effective frequencies of each subclass are the same as they are in the training set. If we turn off
this reweighting, the cluster-robust validation performance is a more accurate measure of the true robust
performance, since the frequency of the underperforming subclass increases in the validation set. Using this
unreweighted metric to select the best model checkpoint increases the true robust performance of George to
83.3%—an improvement of over 22 points compared to ERM checkpointed against average accuracy on the
same unreweighted validation set. We stress that the true validation subclass labels are still assumed to be
unknown in this experiment. Having training and validation sets with different distributions is realistic in
many situations.

6.5 Extension: Leveraging Pretrained Embeddings

As an alternative to training an ERM model, we assess whether recent pretrained image embeddings (BiT,
[27]) can provide better features for Step 1 of George. Specifically, we modify Step 1 of George to
compute BiT embeddings for the datapoints, cluster the embeddings, and use these cluster assignments as
estimated subclass labels in Step 2 of George. This modification (George-BiT) dramatically improves
robust accuracy on CelebA to 87.3% (±1.3%), nearly matching subclass-GDRO.3

3Overall accuracy drops somewhat to 91.5%.
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Method Checkpoint Metric Waterbirds U-MNIST ISIC CelebA
Non-patch Histopath.

ERM Acc. 63.3(±1.6) 93.9(±0.6) .922(±.003) .875(±.005) 40.3(±2.3)
Unw. Acc. 60.7(±0.7) 94.2(±0.8) - -
Robust Acc. 68.8(±0.9) 94.5(±0.9) .924(±.003) .880(±.004) 46.3(±2.1)

George Cluster-Robust Acc. 76.2(±2.0) 95.7(±0.6) .912(±.005) .876(±.006) 53.7(±1.3)
Unw. Cluster-Robust Acc. 83.3(±1.3) 95.7(±0.6) - -

Robust Acc. 83.8(±1.0) 96.5(±0.2) .915(±.004) .877(±.006) 54.9(±1.9)

Table 4: Test robust performance for each method, where the “best” model checkpoint over the training trajectory is
selected according to the listed metric on the validation set. “Unw.” stands for unweighted, where we do not reweight
the frequencies of different subclasses in the evaluation sets. This only applies to Waterbirds and U-MNIST, as the
subclass proportions of ISIC and CelebA are roughly equal across splits. (For ISIC, the checkpoint metrics are AUROC
rather than accuracy; in the two subcolumns we define the true robust performance as AUROC for the non-patch or
histopathology subclass, respectively.)

The CelebA BiT clusters align much better with the true subclasses (cf. Table 2), which helps explain this
improvement. Similarly, cluster-robust accuracy measured using the BiT clusters is much closer to the true
robust accuracy: for the George-BiT model, average cluster-robust performance on the BiT clusters is
83.3± 1.3%, and for ERM it is 33.9± 2.5% [compared to the true robust accuracy of 40.3%].

Despite its excellent performance on CelebA, the default George implementation outperforms George-BiT
on the other datasets, suggesting that BiT is not a panacea: on these datasets, the task-specific information
contained in the representation of the trained ERM model seems to be important for identifying meaningful
clusters. See Appendix B.3.5 for additional evaluations and discussion. Extending Step 1 of George to
enable automatically selecting between different representations (e.g., BiT vs. ERM) is a compelling future
topic.

7 Conclusion

We propose George, a two-step approach for measuring and mitigating hidden stratification without requiring
access to subclass labels. George’s first step, clustering the features of an ERM model, identifies clusters
that provide useful approximations of worst-case subclass performance. George’s second step, using these
cluster assignments as groups in GDRO, yields significant improvements in worst-case subclass performance.
We analyze George in the context of a simple generative model, and show that under suitable assumptions
George achieves the same asymptotic sample complexity rates as if we had access to true subclass labels.
We empirically validate George on four datasets, and find evidence that it can reduce hidden stratification
on real-world machine learning tasks. Interesting directions for future work include further exploring different
ways to learn representations for the first stage of George, developing better unsupervised metrics to choose
between representations and clustering methods, and characterizing when ERM learns representations that
enable separation of subclasses.
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Broader Impact

The potential real-world impact of George, the approach we present in this work, is that it would allow
machine learning practitioners to both measure and mitigate hidden stratification without requiring any
additional prior information. Concretely, this means that users would be able to leverage clusters identified
in Step 1 of George to measure performance gaps between unlabeled subclasses, and that they would
subsequently be able to reduce that subclass performance gap via Step 2 of George. We hope that
George could serve as a drop-in replacement for standard ERM-based techniques in situations where
ensuring good performance across many potentially unknown subclasses is important, as it is simple to
implement and can be generically applied: all that is required to apply George to an existing model is (a)
clustering within the representation space of a trained model and (b) retraining using a GDRO objective
with the cluster assignments used as groups.

As an example of how George could be important for meaningful practical applications, we consider our
results presented on the ISIC dataset in a real-world context. Naively, the overall AUROC on the ISIC
dataset obtained using an ERM-trained model is 0.957, which suggests a high-performing model; however, our
clustering (Step 1 of George) reveals that a large fraction of the benign images contain a “spurious” brightly
colored patch, which makes them very easy to classify. The model performs substantially worse for cases
without such a patch, and worse still on “more difficult” cases for which a clinician would also have required a
histopathology examination to make a diagnosis. Thus, if deployed in practice with a target sensitivity value
in mind, the appropriate way to set an operating point for this model is in fact cluster-dependent ; if a single
operating point were set using the aggregate ROC curve, the true sensitivity on the histopathology subclass
would be substantially lower than intended. This means that even just measuring hidden stratification via
Step 1 of George can provide crucial information that would help avoid spurious false negatives at test
time—the worst type of error a medical screening application can make.

As shown in the paper, Step 2 of George can improve performance on underperforming subclasses. Our
approach thus provides additional value via a simple retraining procedure that can reduce the amount of
hidden stratification exhibited by the model. While our approach will certainly not provide substantial gains
in every possible case—for instance, if performance gaps between subclasses are already minimal—we also
do not expect it to cause substantial performance degradation. Indeed, even if the clusters returned by
George are random groupings of points that do not align well with the true subclasses, we still expect a
model trained to be robust across such groups to perform similarly to a standard ERM model (as in this case
the average per-cluster losses are likely to be close to the overall loss on the superclass). This conclusion is
empirically supported by the random-GDRO results of Appendix B, which are generally comparable to ERM.

In summary, we hope that George will have broader impacts by (a) enabling better measurement of hidden
stratification via Step 1, even without knowledge of the subclasses, and (b) potentially improving performance
on underserved subclasses with Step 2, with only modest additional effort required compared to normal
training procedures (i.e., clustering + retraining with GDRO). In addition to medical imaging tasks such as
ISIC, subclasses could represent a large number of important categories including race, gender, and others
on which one would generally want to ensure good performance on all subclasses, rather than optimizing
for average performance while underserving certain categories. If successful, George can help to detect
and mitigate such important performance differences before models are deployed in practice. To support
these potential impacts, we have released a complete implementation of our code,4 with an easily usable
PyTorch API. We look forward to engaging with the broader community to improve our work and deploy it
on real-world applications.
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Appendix

A Related Work

Our work builds on several active threads in the machine learning literature.

Hidden Stratification Our motivating problem is that of hidden stratification, wherein models trained
on superclass labels exhibit highly variable performance on unlabeled subclasses [36]. This behavior has been
observed in a variety of studies spanning both traditional computer vision [52, 39, 14, 22] and medical machine
learning [36, 17, 19, 11]. Of note is the work of [39], who propose that the existence of “distribution shift" at
the subclass level may substantially affect measures of test set performance for image classification models
on CIFAR-10. They use a simple mixture model between an “easy” and a “hard” subclass to demonstrate
how changes that would not be detectable at the superclass level could affect aggregate performance metrics.
[8] extend these ideas by developing notions of visual hardness, and suggest that better loss function design
would be useful for improving the performance of machine learning models on harder examples. [37] study
how to automatically find large, interpretable underperforming data slices in structured datasets.

Our approach is also inspired by the literature on causality and machine learning, and in particular by
the common assumption that the data provided for both training and evaluation are independent and
identically distributed (IID) [44]. This is often untrue in real-world settings; in particular, classes in real-world
datasets are often composed of multiple subclasses, and the proportions of these subclasses may change
between training and evaluation settings—even if the overall class compositions are the same. Many of the
guarantees from statistical learning theory break down in the presence of such non-IID data [7], suggesting
that models trained using traditional Empirical Risk Minimization (ERM) are likely to be vulnerable to
hidden stratification. This motivates the use of the maximum (worst-case) per-subclass risk, rather than the
overall average risk, as the objective to be optimized.

Neural Representation Clustering The first stage of the technique we propose for addressing hidden
stratification relies heavily on our ability to identify latent subclasses via unsupervised clustering of neural
representations learned via ERM. This has been an area of substantial recent activity in machine learning,
and has provided several important conclusions upon which we build in our work. The work of [32] and [46],
for instance, demonstrate the utility of a simple autoencoded representation for performing unsupervised
clustering in the feature space of a trained model. While the purpose of these works is often to show that
deep clustering can be competitive with semi-supervised learning techniques, the mechanics of clustering in
model feature space explored by these works are important for our present study. Indeed, we directly leverage
the conclusion of [32] that Uniform Manifold Approximation and Projection (UMAP) [33] works well as a
dimensionality reduction technique for deep clustering in the current study.

Further, the fact that work such as [20] directly uses neural representation clustering to estimate the presence
of novel classes in a given dataset provides an empirical basis for our approach, which uses a model trained
with ERM to approximately identify unlabeled subclasses within each superclass. Similarly, [25] demonstrate
excellent semi-supervised image classification performance by maximizing mutual information between the
class assignments of each pair of images. Their work demonstrates not only the utility of a clustering-style
objective in image classification, but also suggests that overclustering – using more clusters than naturally
exist in the data – can be beneficial for clustering deep feature representations in a manner that is helpful for
semi-supervised classification.

A related, but different, approach is that of [14], who explicitly attempt to identify subcategories of classes
via a graph and SVM-based “subcategory mining” framework in order to improve overall task performance.
The subcategory mining algorithm is quite complicated and uses manually extracted features (rather than
automatically learned features, e.g., from CNNs); in addition, this work is geared towards improving overall
performance, rather than ensuring good performance on all subcategories. Nevertheless, it is an important
piece of prior literature.

17



Distributionally Robust Optimization The second stage of our proposed approach depends on our
ability to optimize the worst-case classification loss over existing subgroups, otherwise known as the Distri-
butionally Robust Objective (DRO). This formulation draws a clear connection between our work and the
literature on fairness in machine learning [4], which is at least partially concerned with ensuring that trained
models do not disadvantage a particular group in practice. While there exist a wide variety of definitions for
algorithmic fairness [21, 30, 26], the common idea that models should be optimized such that they respect
various notions of fairness is closely related to the DRO formulation.

A multitude of recent studies have explored optimizing the DRO objective in slightly different contexts. [16],
for instance, consider the general case of optimizing the worst-case loss over any possible subgroup of the data;
while conceptually important, their results do not assume a learned feature representation, and the necessary
assumptions are quite restrictive. Perhaps most relevant to the current work is the study of [43], who propose
the group DRO algorithm for training classifiers with best worst-case subgroup performance. Crucially, this
algorithm demonstrates improved worst-case subclass performance in cases where triplets (x, y, g) are known
for every data point, with x is the input data, y is the true label, and g is a true subgroup label. While [43]
present preliminary evidence that group DRO can work well in the presence of imperfect g, the efficacy of
the algorithm in this setting remains functionally unexplored. We leverage the group DRO algorithm as an
optimizer for solving the DRO objective with respect to our approximately identified subclasses.

Other relevant techniques include invariant risk minimization, which attempts to train classifiers that are
optimal across data drawn from a mixture of distributions (i.e., a non-IID setting) [1]; methods from slice-
based learning that learn feature representations optimized for ensuring high performance on specific subsets,
or “slices" of the data [10]; mixture-of-experts models, which explicitly handle learning models for multiple
different subsets of data [24]; and techniques for building robust classifiers via domain adaptation [50].

While our work is closely related to these directions, a major difference is that we handle the setting where
the different subclasses (i.e., groups, environments, slices, etc.) are unidentified.

Representation Learning with Limited or Noisy Labels A final research thread that is closely related
to the work presented here focuses on deep representation learning in the absence of ground truth labels.
Our methods are similar in spirit to those from weak supervision [34, 38], which focuses on training models
using noisy labels that are often provided programmatically. Our work can be seen as analyzing a new form
of fine-grained weak supervision for DRO-style objectives, which is drawn from unsupervised clustering of
an ERM representation. Another related line of work is representation learning for few-shot learning [48];
however, our work fundamentally differs in the sense that we assume no access to ground truth subclass
labels.

Other methods aim to automatically learn classes via an iterative approach. An early work of this type is [6],
which uses iterative clustering and ERM training to learn highly effective feature representations for image
classification. More recently, [18] used a self-supervised task to learn semantically meaningful features, and
then generate labels using an iteratively refining approach. Our work differs from these in that we do assume
access to ground truth superclass labels—which provide much more information than in the fully-unlabeled
setting—and use clustering within each superclass to generate approximate labels. In addition, our primary
end goal is not accurate identification of the subclasses, but ensuring good worst-case performance among all
subclasses.

Finally, other works aim to promote a notion of “diversity” among feature representations by adding different
regularizers. In [51], such a regularizer was introduced in the context of latent space models, to better
capture infrequently observed patterns and improve model expressiveness for a given size. More recently, [35]
introduced a regularizer that aims to promote diversity of the predicted logits. They showed that this method
could also lead to estimation of subclasses within a superclass, without requiring subclass labels. However,
this work focused on improving overall performance, and specifically improvement of knowledge distillation;
by contrast, our goal is to improve robust performance. Nevertheless, integrating these recent ideas into our
work is an interesting avenue for future work, to potentially further improve the feature learning stage.
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B Experimental Details

B.1 George Pseudocode

We provide pseudocode for George in Algorithm 1, to complement the detailed description of our methodology
in Section 4.5 Note that our model class F (as per the notation in Section 2.2) is a class of neural networks,
composed of a “featurizer” module fθ and a “linear classification head” L that takes the feature representation
to a prediction.

Algorithm 1 “George”

Input: Data and superclass labels (x, y) = {(xi, yi)}ni=1; loss function `(·, ·); featurizer class F(θ) parame-
terized by θ ∈ Rp, dimensionality reducer g, e.g., UMAP (default: identity)
Optional input: Pretrained featurizer fθ

if featurizer fθ provided then
pass

else
# train model [featurizer fθ & linear classification head L] to minimize empirical risk, and save featurizer

fθ, L← argmin
θ′∈Rp,L′

{
1
n

n∑
i=1

`(L′ · fθ′(xi), yi)
}

end if
# compute feature vectors
{vi}ni=1 = g(fθ(xi)).
for b = 1 to B do

# cluster features of each superclass
{ẑi} ← Get_Cluster_Labels({vi : yi = b})

end for
# train final model to minimize maximum per-cluster risk

fθ̂, L̂← argmin
θ′∈Rp,L′

{
max

c∈{1,...,C}
1
nc

n∑
i=1

1(ẑi = c)`(L′ ◦ fθ′(xi), yi)
}

return (fθ̂, L̂)

Note that our framework is not constrained by the specific choice of clustering algorithm, dimensionality
reduction algorithm, or robust optimization algorithm. While we use GDRO throughout this work, other
training techniques that encourage good robust performance could be swapped in for GDRO during “Step 2”
of George.

B.2 Dataset Details

Below, we describe the datasets used for evaluation in more detail. [We provide PyTorch dataloaders to
support each one in our code.]

Each dataset contains labeled subclasses; although the George procedure does not use the subclass labels at
any point, we use them to assess how well George (a) can estimate the subclass labels and (b) can estimate
and improve worst-case subclass performance.

We remark that while we evaluate on binary classification tasks in this work, George can readily be applied
in principle to tasks with any amount of superclasses and subclasses.

5We note that the final step of George—training a model to minimize the maximum per-cluster risk—can also be done
when “soft” (probabilistic) cluster labels are given instead of hard assignments; see Appendix D.5.
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(c) ISIC (Histopathology)
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(d) CelebA

Figure 5: Performance of ERM, Superclass-GDRO (SP-GDRO), Random-GDRO (R-GDRO), George, and Subclass-
GDRO (SBC-GDRO). We also show George with BiT embeddings (G-BiT) for CelebA; however, G-BiT performed
significantly worse on the other datasets.

B.2.1 U-MNIST

Undersampled MNIST (U-MNIST) is a binary dataset that divides data from the standard MNIST dataset
(which has 60,000 training points) into two superclasses: numbers less than five, and numbers greater than or
equal to five. Crucially, the “8" subclass is subsampled at 5% of its usual frequency in MNIST. The rarity of
the “8” subclass makes this task much more challenging than the default MNIST task, in terms of robust
performance. We use data drawn from the original MNIST validation set as our test set; we create a separate
validation set of 12,000 points by sampling from the MNIST training set, and use the remainder for training.

On the validation (and test) sets, we do not actually undersample the 8’s, as this would leave only 50-60 “8”
examples; instead, we downweight these examples when computing validation/test accuracies and losses, to
mimic the rarity that would be induced by actually undersampling but still allow for more stable accuracy
measurements.

B.2.2 Waterbirds

The Waterbirds dataset (4,795 training points) used in this work was introduced in [43]. Similar to our
approach for U-MNIST, Sagawa et al. [43] create more balanced validation and test sets to allow for stable
measurements, and downweight the examples from rare subclasses during evaluation (as we do for U-MNIST
as well); we follow the same procedure.

B.2.3 ISIC

The dataset from the International Skin Imaging Collaboration (ISIC) website is, at time of writing, comprised
of 23,906 images and their corresponding metadata [12]. We extract the ISIC dataset directly from the site’s
image archive, which is accessible through a public API.6 We only use images whose metadata explicitly

6https://isic-archive.com/api/v1/
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describe them as “benign” or “malignant.” We use these descriptors in order to formulate the problem as
a binary classification task that classifies images as either normal or abnormal. Other possible descriptors
that exist in the image metadata (which we filter out) include “indeterminate,” “indeterminate/benign,”
“indeterminate/malignant,” or no description. We created pre-set training, validation, and test splits from
these images by randomly assigning 80% of examples to the training set, 10% to the validation set, and 10%
to the test set.

We derive true subclass information from the image metadata. In particular, we observed that an image
belongs in the benign patch subclass if and only if it is an image from the SONIC data repository [45]. As is
detailed in the paper, we are retroactively able to identify the histopathology subclass through analysis of the
diagnosis confirmation type of each image. Images in the histopathology subclass were explicitly mentioned
as such—other possible diagnosis confirmation types include “single image expert consensus,” “serial imaging
showing no change,” “confocal microscopy with consensus dermoscopy,” or no confirmation type.

B.2.4 CelebA

The CelebA dataset [31] is a standard face classification dataset containing over 200,000 examples (≈ 163, 000
train) of celebrity faces, each annotated with 40 different attributes. The images contain a wide variety of
poses, backgrounds, and other variations. The task is to classify faces as “blond” or “not blond,” as in [43].
We use the standard (pre-set) train/validation/test splits for this task.

B.3 Methods

B.3.1 Result Reporting

For each dataset, we perform ten separate trials of each method with different random seeds. The exception
is CelebA, on which we perform five trials instead due to the larger dataset size. In all result tables, ‘X ± Y ’
intervals represents a 95% confidence interval, where X is the mean of the per-trial results and Y is the
interval half-width, calculated as standard deviation times 1.96 divided by the square root of the number of
trials. Similarly, in all plots, error bars denote 95% confidence intervals computed the same way.

B.3.2 Baselines

In addition to ERM, we run two additional baseline methods: superclass-GDRO and random-GDRO.
Superclass-GDRO minimizes the maximum loss over each superclass, i.e., runs GDRO using the superclasses
as groups. Since we assume knowledge of the training superclass labels, this does not require additional
information at training time. Random-GDRO runs GDRO using randomly chosen groups within each
superclass, where the groups are chosen to have the same sizes as the true subclasses. Since we do not assume
the subclass sizes are known, this is not a method that would be useful in practice; rather, it helps highlight
the difference between running GDRO with labels that do not align well with the true subclasses, and running
GDRO with labels that do. Results on each dataset are presented in Figure 5.

B.3.3 ERM Training Details

The first stage of our procedure is to train a model for each application using ERM. The activations of the
resulting model are clustered and used in the second stage of our procedure. Inspired by the results of [43],
we explored using either a standard ERM model or an ERM model with high regularization for this stage,
selecting between the two based on the quality of the resulting clustering as measured by the Silhouette score
(an unsupervised metric). Below, we detail the ERM hyperparameter settings for each dataset.
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U-MNIST Our U-MNIST model is a simple 4-layer CNN, based on a publicly available LeNet5 implemen-
tation;7 based on this implementation, we fix the learning rate at 2e-3 and use the Adam optimizer. Each
model is trained for 100 epochs. Because the original implementation does not specify a weight decay, we
search over weight decay values of [10−3, 10−4, 10−5], and choose the setting with highest average validation
accuracy over three trials with different random seeds. Our final hyperparameters are recorded in Table 5.

Waterbirds Our Waterbirds model uses the torchvision implementation of a 50-layer Residual Network
(ResNet50), initialized with pretrained weights from ImageNet (as done in [43]). We use hyperparameters
reported by [43]: weight decay of 1e-4, learning rate of 1e-3, SGD with momentum 0.9, and 300 epochs.

CelebA Our CelebA model also uses a torchvision pretrained ResNet50, as done in [43]. We use the
hyperparameters reported by [43]: weight decay of 1e-4, SGD with momentum 0.9, and 50 epochs. However,
we train on 4 GPUs instead of 1. (This change does not substantially affect the results; our ERM and
subclass-GDRO results are similar to those reported in [43].)

ISIC Our ISIC model also uses a torchvision pretrained ResNet50. Models were trained for 20 epochs
using SGD with momentum 0.9 (as done in [41]). Because these hyperparameters were unavailable in the
literature for this architecture and task, we grid searched over weight decay values in [0.01, 0.001, 0.0001]
and learning rates in [0.0005, 0.001, 0.005], selecting the values that maximize the overall AUROC on the
validation set, averaged over three trials per hyperparameter setting.

Rather than measuring accuracy for ISIC, we use the AUROC (area under the receiver operating charac-
teristic curve), as is standard on this task [41] and other medical imaging tasks [36]. The specific metric of
interest is the worst per-benign-subclass AUROC for classifying between that subclass and the malignant
superclass (e.g., benign no-patch vs. malignant AUROC). Typically, models designed to attain high AU-
ROC are trained by minimizing the empirical risk as usual. For our robust models, we instead minimize

max
c∈benign

{
1

nc + nmalignant

∑
x

1(zi = c OR yi = malignant)`(xi, yi; θ)

}
- in other words, the maximum over all

benign subclasses of the “modified” empirical risk where all other benign subclasses are ignored. We do this
because the worst-case loss over any benign or malignant subclass is not necessarily a good proxy for the
worst-case per-benign-subclass AUROC. Due to the dataset imbalance (many fewer malignant than benign
images), standard ERM models attain 100% accuracy on the benign superclass and much lower accuracy
(and higher loss) on the malignant superclass. By contrast, in practice a classification threshold is typically
selected corresponding to a target sensitivity value.

B.3.4 Clustering Details

We apply a consistent clustering procedure to each dataset, which is designed to encourage discovery of
clusters of varied sizes, while still being computationally efficient. We emphasize that while the clustering
procedure outlined below yields adequate end-to-end results on our datasets, optimizing this part of the
George procedure represents a clear avenue for future work. In particular, we use the Silhouette score as a
metric to select between feature representations and number of clusters; while this is a serviceable heuristic,
it has several flaws (and in the case of BiT embeddings, misleadingly suggests that they are not a suitable
representation due to their low Silhouette score).

1. Dimensionality Reduction: As recommended by [32], we use UMAP for dimensionality reduction before
clustering; clustering is faster when the data is low-dimensional, and we find that UMAP also typically
improves the results. As an alternative to UMAP, we also use the component of the representation
that is orthogonal to the decision boundary, which we refer to as the “loss component,” as a single-
dimensional representation; this can improve clustering on datasets, especially when performance

7https://github.com/activatedgeek/LeNet-5
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on certain subclasses is particularly poor (as discussed further in Appendix D.3).8 When the loss
component is used to identify clusters, we find that applying higher regularization to the initial ERM
model further improves clustering quality, as this regularization “pushes examples further apart” along
the loss direction, and adopt this convention in our experiments.9

In each experiment, we select the representation and the number of clusters k based on the parameter
setting that achieves the highest average per-cluster Silhouette score. (For all experiments, we set the
number of UMAP neighbors to 10 and the minimum distance to 0; further information about these
hyperparameters can be found in [33].)

The fact that simply using the “loss component” can yield reasonable results is arguably surprising, as
this essentially amounts to just picking the examples that the original network got wrong (or closer
to wrong than others). Nevertheless, especially on tasks with severe data imbalances and “spurious
features” (e.g., Waterbirds and CelebA), the rare subclasses do tend to be misclassified at far higher
rates, so simply picking the misclassified examples can be a crude but effective heuristic.

2. Global Clustering : For each superclass, we search over k ∈ 2, . . . , 10 to find the clustering that yields
the highest average Silhouette score, using the dimensionality reduction procedure identified above. We
similarly perform a search over clustering techniques (k-means, GMM, etc.), and find that GMM models
achieve high average Silhouette scores most often in our applications. Given that GMM clustering
also aligns with our theoretical analysis, we use this approach for all datasets. We refer to this global
clustering as fC,G.

3. Overclustering : For each superclass, we take the clustering fC,G achieving the highest average Silhouette
score, and then split each cluster ci into F sub-clusters ci1, . . . , ciF , where F denotes the “overclustering
factor” (fixed to 5 for all experiments). For each sub-cluster cij whose Silhouette score exceeds the
Silhouette score of the corresponding points in the original clustering, and which contains at least smin
points (for a small threshold value smin), the global clustering fC,G is updated to include cij as a new
cluster (and its points are removed from the base cluster ci). The overclustering factor F was coarsely
tuned via visual inspection of clustering outputs (without referencing the true subclass labels); the
threshold value smin is used to prevent extremely small clusters, as these can lead to instability when
training with GDRO and/or highly variable estimates of validation cluster-robust accuracy. (Note: We
do not apply overclustering to 1-dimensional representations, as it tends to create strange within-interval
splits.)

B.3.5 BiT Details

As an alternative to representations from a trained ERM model, we explore the use of BiT embeddings [27],
as discussed in Section 6.5. We use the ResNet-50 version of BiT embeddings; specifically, BiT embeddings
are the activations of the penultimate layer of a network pretrained on massive quantities of image data (see
[27] for more details). The remainder of George proceeds the same as usual: the embeddings are clustered
and then the cluster assignments are used in the GDRO objective.

For BiT, we experimented with both clustering the BiT embeddings directly (under the hypothesis that the
BiT embedding space itself is a good representation), and clustering after dimensionality reduction with
UMAP. We found clustering raw embeddings generally performed somewhat better; thus, we show results for
clustering the raw embeddings. Due to the high dimensionality of these embeddings (2048-d), we use k-means
clustering when clustering the BiT embeddings, although the rest of our procedure remains the same.

We find that BiT embeddings significantly improve the end-to-end robust performance results on CelebA;
however, they perform worse than the standard version of George on all other datasets, indicating that
the task-specific information is important for these other tasks to learn a “good” representation that can be
clustered to find superclasses. Indeed, we find that on these other tasks, the BiT clustering is worse than

8We experimented with concatenating the UMAP and loss representations, but found this to reduce performance.
9The loss component is used for Waterbirds and CelebA (non-BiT version). For both datasets, the weight decay and learning

rate used for the high-regularization ERM model are the same as the ones used for the GDRO models on that dataset.
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clustering the activations of the ERM model, in terms of precision and recall at identifying poorly-performing
subclasses. [For example, when BiT embeddings are used on MNIST, the “8”s are never identified as their
own cluster.]

Surprisingly, the clustered BiT embeddings uniformly have a much lower Silhouette score than the clustered
ERM embeddings, even for CelebA. Thus, our current unsupervised representation and clustering selection
technique would not have identified the BiT embeddings as better for CelebA. Improving the representation
and clustering selection metric to do a better job at automatically choosing among different representations is
an interesting avenue for future work. We note that if a small validation set with subclass labels is available,
such a set could be used to select between different clusterings by measuring the degree of overlap of the
clusters with the true subclasses, as well as used to measure which representation and clustering technique
eventually leads to the best validation robust accuracy; however, in general we do not assume any prior
knowledge about the subclasses in this work.

B.3.6 GDRO Training Details

In the final step of George, we train a new model (with the same architecture) using the group DRO
approach of [43] with weak subclass labels provided by our cluster assignments, and compare to GDRO
models trained using (a) superclass labels only, (b) random subclass labels. and (c) human-annotated subclass
labels. Below, we describe the hyperparameter search procedure for each such model and dataset. Unless
otherwise stated, all other hyperparameters (batch size, # epochs, etc.) are the same as those for ERM.

U-MNIST In the case of U-MNIST, we ran a hyperparameter search over weight decay in [1e-3, 1e-4,
1e-5], and C (the group size adjustment parameter from [43]) in [0, 1, 2]. We find performance to be fairly
insensitive to the hyperparameters, so choose weight decay of 1e-5 and C = 0 for simplicity and consistency
with ERM.

Waterbirds For Waterbirds, we use hyperparameters provided by [43], so no additional hyperparameter
tuning is required. These hyperparameters are presented in Table 5.

CelebA For CelebA, we again use hyperparameters provided by [43], so no additional tuning is required.
These are presented in Table 5.

ISIC Each type of ISIC model is hyperparameter searched over the same space as the original ERM model,
in addition to searching over group size adjustment parameter C in [0, 1, 2]. We found performance to be
fairly insensitive to both. Hyperparameters with highest validation performance were used in the final runs,
and are reported in Table 5.

B.4 Hyperparameters

In Table 5, we present the selected hyperparameters for the final runs of each dataset and method.

C Additional Experimental Results

In this section, we provide additional ablation experiments.
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Dataset Training Procedure Epochs Learning Rate Batch Size Weight Decay Group Adj. Parameter
U-MNIST ERM 100 2e-3 128 1e-5 -
U-MNIST Random-GDRO 100 2e-3 128 1e-5 0
U-MNIST Superclass-GDRO 100 2e-3 128 1e-5 0
U-MNIST George 100 2e-3 128 1e-5 0
U-MNIST Subclass-GDRO 100 2e-3 128 1e-5 0
Waterbirds ERM 300 1e-3 128 1e-4 -
Waterbirds Random-GDRO 300 1e-5 128 1 2
Waterbirds Superclass-GDRO 300 1e-5 128 1 2
Waterbirds George 300 1e-5 128 1 2
Waterbirds Subclass-GDRO 300 1e-5 128 1 2

ISIC ERM 20 1e-3 16 1e-3 -
ISIC Random-GDRO 20 1e-3 16 1e-3 2
ISIC Superclass-GDRO 20 1e-3 16 1e-3 1
ISIC George 20 5e-4 16 1e-3 1
ISIC Subclass-GDRO 20 5e-4 16 1e-3 2

CelebA ERM 50 1e-4 128 1e-4 -
CelebA Random-GDRO 50 1e-5 128 0.1 3
CelebA Superclass-GDRO 50 1e-5 128 0.1 3
CelebA George 50 1e-5 128 0.1 3
CelebA Subclass-GDRO 50 1e-5 128 0.1 3

Table 5: Final hyperparameters used in experiments. (Note that for each dataset, all George runs use the same
hyperparameters regardless of whether they use BiT or ERM embeddings.)

C.1 George results and details

C.1.1 U-MNIST

Dimensionality reduction for this dataset used 2 UMAP components and no loss component, as UMAP
achieved higher SIL scores. Our clustering procedure consistently identifies a cluster with a high proportion
of the low-frequency “8" subclass. As detailed in the main body, we also often observe a small additional
cluster with a high concentration of “7"s written with crosses through the main vertical bar (see Figure 6);
performance on this subset is low (below 90%), which explains why cluster-robust performance actually
underestimates the true subclass performance on U-MNIST.

C.1.2 Waterbirds

Dimensionality reduction for this dataset used only 1 component (the loss component); this significantly
outperformed UMAP both in terms of SIL score and final robust performance. We observe that while
our procedure does not yield clusters with absolutely high frequencies of the minority classes (as shown in
Table 2), George still identifies clusters with high enough precision (i.e., high enough proportions of the
poorly-performing subclasses) such that the second stage of George can substantially improve performance
on these subclasses.

C.1.3 ISIC

Dimensionality reduction for this dataset used 2 UMAP components and no loss component. On ISIC,
although clustering reveals the non-patch and histopathology subclasses with fairly high fidelity as shown in
Table 2, we do not observe significant improvements in performance on either subset. We hypothesize that
this is due to these subsets being “inherently harder.” For example, we find that even Subclass-GDRO, which
uses the true patch vs. non-patch subclass labels, fails to significantly improve performance on the non-patch
subclass compared to ERM, and in fact fails to significantly reduce the training loss on it compared to ERM
despite being explicitly trained to do so. This suggests that the issue causing underperformance on these
subsets may be due to other factors than the training optimization algorithm (such as model capacity).
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Figure 6: True subclasses in the “feature space” of a trained ERM model. Left panel legend colors points by their
true subclass, and displays the validation accuracies that the model attains on each subclass. Middle panel colors
points by the cluster index that George assigns them. Right panel displays randomly selected examples from each
cluster. Datasets: U-MNIST (row 1), Waterbirds (row 2), and ISIC (row 3). Note that for Waterbirds, the vertical
axis is the “loss component” and the horizontal axis is the UMAP component.

Figure 7: True subclasses in BiT embedding space for CelebA, clusters (middle), and examples from selected clusters
(right).

C.1.4 CelebA

Dimensionality reduction for CelebA (without BiT) used only 1 component (the loss component). We observe
that clustering does not do a good job of identifying the subclasses of either superclass; thus, it is not
surprising that the default version George (i.e., without BiT) performs poorly. In fact, George performs
poorly even compared to the non-ERM baselines. By contrast, George-BiT does significantly better; the
clustering on the (nearly balanced) non-blond superclass attains approximately 95% accuracy at distinguishing
between men and women, and the clustering on the blond superclass also significantly improves over the
default version of George.

C.2 Additional Evaluations and Ablations

C.2.1 Visualizing Clusters

In Figures 6 and 7, we visualize the representations returned by George, as well as the clusters it finds and
representative examples from each cluster.
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Figure 8: Overall accuracy, worst-case cluster accuracy, and worst-case true subclass accuracy on the validation set
during a randomly selected training run of George on Waterbirds [(a) using reweighting for validation set, and (b)
not using reweighting]. The worst-case cluster accuracy closely tracks the worst-case true subclass accuracy (especially
when reweighting is not applied, whereas the overall accuracy is significantly higher due to the overrepresentation of
the “easier” subclasses.

C.2.2 Comparing Cluster-Robust Performance and True Robust Performance

In addition to the results of Table 3 which show that the cluster-robust performance is a good approximation
for the true robust performance, we find that the cluster-robust performance typically tracks closely with
the true robust performance throughout training (with the exception of CelebA without BiT clusters). For
example, Figure 8 plots the validation cluster-robust accuracy and validation true robust accuracy from a
randomly selected training run on Waterbirds. Both metrics are quite close to each other throughout training
(while the overall accuracy is significantly higher).

C.2.3 Runtime

In Table 6, we present runtimes for the standard version of George broken down by stage.

As the default implementation of George involves first training an ERM model, dimensionality-reducing
and then clustering its activations, and then training a “robust” model with GDRO, the total runtime is
roughly 2-3x long as that of simply training an ERM model. For George-BiT, no ERM model is trained
(and we do not apply dimensionality reduction), so the runtime is just the runtime of the clustering stage plus
the runtime of training the GDRO model (“Step 2”). On our datasets, the total runtime of George-BiT is
less than 1.5x times the runtime of George. For instance, on CelebA with BiT embeddings (the largest and
most expensive dataset), the entire clustering stage (including the time taken to compute the BiT embeddings
of the datapoints) takes 46 minutes, while the time taken to train the ERM model is roughly 2.5 hours.
(Clustering the BiT embeddings is more expensive because they are 2048-dimensional.)

Note that the runtime of typical clustering algorithms scales superlinearly in the number of datapoints; while
the clustering runtime is usually less than the training time for the datasets we evaluate on, a remedy for
larger datasets could be to only use a random subset of the data for clustering (which typically does not
significantly worsen the cluster quality). In addition, we did not attempt to optimize the dimensionality
reduction and clustering routines themselves. As we search over k from 2 to 10 for each superclass, and then
overcluster, this is 20 different clusterings in total, along with computing the Silhouette score for each one
(which is also expensive as it involves computing pairwise distances). If we instead fixed k (for instance), the
total clustering runtime would be less than 7 minutes even for CelebA with BiT embeddings.

The runtime of George can be substantially reduced by training the second (robust) model for fewer
epochs. On Waterbirds and CelebA, we can recover over 70% of the worst-case performance improvement of
George even when we limit the total runtime to 1.3x that of ERM, simply by training for fewer epochs in
the second stage. On U-MNIST, if we additionally adjust the LR decay schedule so that decay occurs before
the end of the shortened training, and fix k to 5 to avoid the expensive search over k as described above, we
can achieve this as well. (On ISIC, the ERM model itself already attains nearly the same robust AUROC on
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the histopathology subclass, and higher on the non-patch subclass, than the George model.)

Dataset ERM total runtime Clustering total runtime GDRO total runtime
U-MNIST 9m 6m 10m

ISIC 31m 2m 32m
Waterbirds 90m 1m 91m
CelebA 177m 17m 179m

Table 6: Average runtimes for different stages of George (standard implementation, without BiT). All runtimes are
reported on a machine with 8 CPUs and a single NVIDIA V100 GPU, except for CelebA which was run on a machine
with 32 CPUs and four NVIDIA V100 GPUs. (George-BiT differs only in the clustering runtime.)

C.2.4 Label Noise

We ran experiments in which a fixed percentage of the data of each subclass was randomly given an incorrect
superclass label. With a minor modification (discarding small clusters), George empirically works well in
the presence of label noise when the total number of corrupted labels in each superclass is less than the size
of the smallest subclass. Up to this noise threshold, George attains +3 points robust accuracy on MNIST
and +4 points robust AUROC on ISIC compared to ERM. However, ensuring subgroup-level robustness if
there is a larger group of ”wrong” examples is difficult because differentiating ”real” subclasses from noise
becomes challenging. Thus, we do not consider applying label noise to Waterbirds as the smallest subclass
(waterbirds on land) is only 1% of the data; similarly, the smallest subclass on CelebA (blond males) is only
3% of the data.

In fact, our clustering approach can even be used to help identify incorrectly labeled training examples. First,
if a small “gold” set of correctly labeled examples is available, the clustering found on the training data could
be evaluated on this gold set; clusters consisting of mostly incorrectly labeled training examples should have
very few members in the gold set. If such a “gold” set is not available, the clusters still allow for much more
rapid inspection of the data for incorrect labels, since a few representative examples from each cluster can
be inspected instead of a brute-force search through all the training images for incorrectly labeled images.
Finally, if one has prior knowledge of the frequency of the rarest subclass in the training data, one can simply
discard training examples belonging to poorly-performing clusters smaller than this threshold, treating them
as incorrectly labeled.

C.2.5 Fixing k

If the number of clusters k is held fixed (rather than automatically chosen based on Silhouette score), robust
performance tends to initially improve with k, before decreasing as large values of k cause fragmented clusters
that are less meaningful. For example, robust accuracies on U-MNIST using 2, 5, 10, 25, and 100 clusters per
superclass are 95.0%, 96.3%, 95.9%, 94.4%, 90.8% respectively. We also observe similar trends on the other
datasets.
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C.2.6 Effect of Model Choice on Subclass Recovery

Figure 9: LeNet5 vs. LeNet 300-100 activations on
U-MNIST with true subclass labels (superclass “<
5”). A simple convolutional network (LeNet5, right)
separates the true subclasses well in feature space,
while a network consisting only of fully-connected
layers (LeNet 300-100, left) does not.

As suggested in Section 4, choosing an appropriate model
class F for the featurizer fθ is important. In particular,
F should ideally contain the inverse of the true gener-
ative function g, in order to recover the latent features
~V from the data X. We demonstrate the importance of
model architecture on the ability to separate subclasses
in the model feature space by comparing the feature rep-
resentations of two simple networks on a superclass of the
U-MNIST dataset (described in Section 6.1). Figure 9
shows that the choice of model family can strongly affect
the learned feature representation of the initial model
and its ability to provide useful information about the
subclass. On this dataset, the feature space of a simple
fully connected network (Figure 9a) yields substantially
less separation between the known subclasses than does
that of a simple convolutional network (Figure 9b), which
displays clusters that clearly correspond to semantically
meaningful subclasses.

C.2.7 Additional Classification Metrics

In Table 7, we compare George and ERM in terms of per-subclass averaged accuracy (SCAA) and average
precision. As expected, George slightly decreases average precision, as it trades off some average-case
performance for better worst-case performance, and George typically increases per-subclass averaged
accuracy (except on U-MNIST, where there is a very slight decrease), due to the fact that it significantly
improves performance on poorly-performing subclasses while only slightly decreasing performance on other
subclasses.

Method Metric Waterbirds U-MNIST CelebA (BiT)

George SCAA 86.7 97.9 90.6
AP .967 .998 .835

ERM SCAA 83.8 98.2 80.5
AP .984 .999 .912

Table 7: Per-subclass averaged accuracy (SCAA) is the mean of the accuracies on each subclass. AP denotes the
average precision score (which has a maximum of 1).

C.2.8 Empirical Validation of Lemma 1

Recall that Lemma 1 says that if we know the true data distribution, we can estimate the per-subclass loss Rc
by the quantity R̃c, a reweighted average of the losses in superclass S(c) based on the ratio of the posterior
likelihood of a point given subclass c to its posterior likelihood given superclass S(c); Lemma 1 bounds their
difference in terms of the number of datapoints n. In Figure 10, we empirically validate Lemma 1 on a
synthetic mixture-of-Gaussian example (in which the true data distribution is indeed known). We generate
data in dimension d = 3 with two subclasses each containing six subclasses each, and compute Rc and R̃c
for varying numbers of samples n in order to observe the scaling with n. We average results over 20 trials;
in each trial, new per-subclass distributions are randomly sampled and then new datapoints are sampled.
Results are shown in Figure 10. As can be observed from the log-log plot, the slope of the line corresponding
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Figure 10: Comparison of theoretical and simulated convergence of R̃c −Rc.

to the simulated |R̃c −Rc| value is very close to that of the predicted rate; the best fit line has a coefficient
of −0.5065, corresponding to a O(n−0.5065) rate, essentially matching Lemma 1’s predicted O(n−0.5) rate.

D Derivations and Proofs

D.1 Analysis of Example 3.1.

We restate Example 3.1 from Section 3.2 below:

Example 3.1 The binary attribute vector ~Z has dimension 2, i.e., ~Z = (Z1, Z2), while only Z2 determines
the superclass label Y , i.e., Y = Z2. The latent attribute Z1 induces two subclasses in each superclass, each
distributed as a different Gaussian in feature space, with mixture proportions α and 1− α respectively. For
linear models with regularized logistic loss, as the proportion α of the rare subclasses goes to 0, the worst-case
subclass accuracy of ERM is only O(α), while that of GDRO is 1−O(α).

Proof. Specifically, we consider the following distribution setup: ~Z ∈{−1,+1}2, with P (~Z = (−1,−1)) =

P (~Z = (+1,+1)) = 1−α
2 , P (~Z = (−1,+1)) = P (~Z = (+1,−1)) = α/2, and P (V1|Z1) = N (4Z1, α

2),
P (V2|Z1, Z2) = N (Z1 + 3Z2, α

2), and the label Y = h(Z1, Z2) simply equals Z2. We assume the observed
data X = (V1, V2), i.e., the observed data is the same as the “underlying features” ~V .

Thus, the superclass Y = −1 is made up of a “big” subclass with distribution N ((−4,−4), α2I) and
relative mixture weight 1 − α [corresponding to ~Z = (−1,−1)], and a “small” subclass with distribution
N ((+4,−2), α2I) and relative mixture weight α [corresponding to ~Z = (+1,−1)], where I denotes the 2× 2
identity matrix. The superclass Y = +1 is made up of a “big” subclass with distribution N ((+4,+4), α2I)
and relative mixture weight 1− α [corresponding to ~Z = (+1,+1)], and a “small” subclass with distribution
N ((−4,+2), α2I) and relative mixture weight α [corresponding to ~Z = (−1,+1)].

For notational simplicity in the following analysis, we will henceforth rename the label Y = −1 as Y = 0. The
prediction of the logistic regression model on a given sample (x1, x2) is σ(w1x1 + w2x2) = σ(wTx), where
σ(x) := log( 1

1+e−x ) denotes the sigmoid function and w1, w2 are the weights of the model. The decision
boundary is the line wTx = 0; examples with wTx < 0 are classified as Y = 0, else they are classified as
Y = 1. [For simplicity of exposition, we assume there is no bias term, and assume that we regularize the norm
of the classifier so that ‖w‖2 ≤ R for some constant R, as changing the parameter norm does not change the
decision boundary. Note that neither assumption is necessary, but they serve to simplify the analysis.]

The logistic loss is the negative log-likelihood, which is −
∑
i

(
yi log( 1

1+e−wT x
) + (1− yi) log( 1

1−e−wT x
)
)

=
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∑
i

(
yi log(1 + e−w

T x) + (1− yi) log(1− e−wT x)
)
. Notice that by symmetry, the loss on the two subclasses

with Z1 = Z2 is the same, as is the loss on the two subclasses with Z1 6= Z2. Therefore, we focus on the class
Y = 1. The expected average loss on the Y = 1 superclass is Ex|y=1[log(1 + e−w

T x)] = P (Z1 = 1|Z2 = 1) ·
Ex|(z1,z2)=(1,1)[log(1 + e−w

T x)] + P (Z1 = −1|Z2 = 1) · Ex|(z1,z2)=(−1,1)[log(1 + e−w
T x)].

By 1-Lipschitz continuity of the logistic loss and Jensen’s inequality,∣∣∣Ex|y=1,z=1[log(1 + e−w
T x)]− Ex|y=1,z=1[log(1 + e−w

T (4,4))]
∣∣∣ ≤

Ex|y=1,z=1[|wTx− wT (4, 4)|] =

Ex|y=1,z=1[|w1(x1 − 4)|+ |w2(x2 − 4)|] = (|w1|+ |w2|)E[|b|],

where b ∼ N(0, α2). E[|b|] = α
√

2/π; so, the loss on the Z1 = 1 subclass is bounded in the range
log(1 + e−w

T (4,4)± α
√

2/π · ‖w‖2.

Similarly, the loss on the Z1 = −1 subclass is bounded in the range log(1 + e−w
T (−4,2))± α

√
2/π · ‖w‖2. So,

the total loss is bounded in (1 − α)log(1 + e−w
T (4,4)) + αlog(1 + e−w

T (−4,2)) ± α
√

2/π · ‖w‖2. When α is
sufficiently small, the first term is Θ(1), while the latter two are O(α) (under the assumption that ‖w‖2 is
bounded). For a fixed value of ‖w‖2, the first term is minimized when w/ ‖w‖2 = ( 1√

2
, 1√

2
), so that wT (4, 4)

is as large as possible. A Θ(α)-scale perturbation to the direction w/ ‖w‖2 results in an increase of Θ(α) to
the term (1− α)log(1 + e−w

T (4,4)). Thus, whenever α is sufficiently small, w/ ‖w‖2 must be ( 1√
2
, 1√

2
) +O(α)

in order to minimize the loss subject to the ‖w‖2 ≤ R constraint. In other words, the regularized ERM
solution converges to a multiple of (w1, w2) = ( 1√

2
, 1√

2
) as α ↓ 0.

For the Z1 = −1 subclass, wTx is a normal random variable with mean −4w1 + 2w2 and variance α ‖w‖22.
When α is sufficiently small and w/ ‖w‖2 = ( 1√

2
, 1√

2
) + O(α), the quantity −4w1 + 2w2 is negative with

magnitude O(1)—and thus, since examples with wTx < 0 are classified as Y = 0, this means that for
sufficiently small α the fraction of the subclass Z1 = −1 classified correctly as Y = 1 is only O(α).

By contrast, the GDRO solution minimizes the maximum per-subclass loss. Since each subclass has the
same covariance α2I, the GDRO decision boundary is the line that separates the superclass means and has
maximum distance to any subclass mean. After normalization to have ‖w‖2 = 1, this is the line (− 1√

5
, 4√

5
);

the true solution will be some multiple of this (depending on α and R), giving rise to the same boundary. As
α ↓ 0, the accuracy of this decision boundary is 1−O(α), since the variance of each subclass is O(α2I).

D.2 Proofs from Section 5

D.2.1 Proof of Lemma 1

Lemma 1. Let Rc be the sample average loss of examples in subclass c. Let w(x, c) := P(x|z=c)
P(x|y=S(c)) . Let R̃c

be the sample average of w(xi, c)`(f(xi), yi) over all examples xi with superclass label yi = S(c). Then R̃c is
an unbiased estimate of Rc, and their difference converges to 0 at O(1/

√
n).

Proof. Define #y=k :=

n∑
i=1

1(yi = k) and #z=c :=

n∑
i=1

1(zi = c). Using this notation, Rc =
1

#z=c

n∑
i=1,zi=c

`(f(xi), S(c)),

and R̃c =
1

#y=S(c)

n∑
i=1,yi=S(c)

P(xi|zi = c)

P(xi|yi = S(c))
`(f(xi), S(c)). First, observe that E[R̃c] = E[Rc]: the ex-

pectation of each term in the summation defining E[R̃c] is Ex∼[P|y=S(c)]

[
P(x|z = c)

P(x|y = S(c))
`(f(x), S(c))

]
=
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∫
Rd

P(x|z = c)

P(x|y = S(c))
`(f(x), S(c))P(x|y = S(c)) dx =

∫
Rd
P(x|z = c)`(f(x), S(c)) dx = Ex∼[P(x|z=c)][`(f(x), S(c))] =

E[Rc], and so E[R̃c] = E[Rc].

Now, note that
P(x|z = c)

P(x|y = S(c))
≥ P(z = c|y = S(c)) ≥ π. Thus, assuming ` is bounded, each term in the

summation defining R̃c is bounded, and has mean E[Rc] as argued above; applying Hoeffding’s inequality
(to bound the probability that a sum of bounded random variables deviates from its mean by more than a
specified amount) yields that

∣∣∣R̃c − E[Rc]
∣∣∣ ≤ O( 1√

n
) with high probability. Similarly, applying Hoeffding’s

inequality to Rc yields that |Rc − E[Rc]| ≤ O( 1√
n

) with high probability.

D.2.2 Proof of Theorem 1

We restate Theorem 1 below:

Theorem 1. Let R̂robust := maxc R̂c. Suppose `, f are Lipschitz, f has bounded parameters, and P(x|z = c)

is Gaussian and unique for each subclass c. Then, if we estimate P̂ using the algorithm from [3], f̂ :=

min
f∈F

R̂robust(f) satisfies Rrobust(f̂)−min
f∈F

Rrobust(f) ≤ Õ(
√

1/n) w.h.p.

Recall that we define R̂c to be the same as R̃c except with weights ŵ(x, c) computed from P̂ . More precisely,

R̂c :=
1

#y=S(c)

n∑
i=1,yi=S(c)

ŵ(x, c)`(f(xi), S(c)) where ŵ(x, c) :=
P̂(x|z = c)

P̂(x|y = S(c))
. [In Appendix D.5, we provide

an efficient algorithm to minimize R̂robust = maxc R̂c.]

Our strategy to prove Theorem 1 will be as follows. First, we prove a general statement (that holds regardless
of the form of the true data distribution) that relates the total variation (TV) between the true per-subclass
distributions and the estimated per-subclass distributions to the difference between R̃c and the perturbed loss
R̂c (Lemma 2). Next, we bound the total variation between the true and estimated per-subclass distributions
in the mixture-of-Gaussians case, using the Gaussian mixture learning algorithm from [3]. Finally, we use
standard uniform convergence-type results to yield the final high probability bound on the robust risk of the
returned model f̂ .

D.2.2.1 Total variation estimation error to error in loss

Lemma 2. Let πmin be the minimum true subclass proportion and π̂min be the minimum estimated subclass
proportion. Suppose that we have estimated subclass-conditional distributions P̂(x|z) such that for each
subclass c, there exists c′ such that TV(P(x|z = c), P̂(x|z = c′)) ≤ ε. If ` is globally bounded by M , then for
fixed f , |R̂c′ − R̃c| ≤ 2MC

min{πmin,π̂min} · ε+O( 1√
n

) with high probability.

Proof. First, we bound |ŵ(x, c′)−w(x, c)| =
∣∣∣ P̂(x|z=c′)
P̂(x|y=S(c))

− P(x|z=c)
P(x|y=S(c))

∣∣∣ = 1
P(x|y=S(c))

∣∣∣P(x|y=S(c))

P̂(x|y=S(c))
·P̂(x|z = c′)−

P(x|z = c)
∣∣∣. By triangle inequality, this is bounded above by 1

P(x|y=S(c))

( ∣∣∣P(x|y=S(c))

P̂(x|y=S(c))
· P̂(x|z = c′)− P̂(x|z = c′)

∣∣∣
+ |P̂(x|z = c′)− P(x|z = c)|

)
.

Note that by definition P̂(x|y = b) =
∑
i∈Sb

π̂b,iP̂(x|z = ci), where we define π̂b,i := P̂(z = ci|y = b) for

each i ∈ Sb. In words, π̂b,i is the “mixture weight” of subclass i within the distribution of superclass
b. We can thus bound

∣∣∣P(x|y=S(c))

P̂(x|y=S(c))
− 1
∣∣∣ P̂(x|z = c′) by 1

P̂(z=c|y=S(c))

∣∣∣P(x|y=S(c))

P̂(x|y=S(c))
− 1
∣∣∣ P̂(x|y = S(c)) =

1
P̂(z=c|y=S(c))

∣∣∣P̂(x|y = S(c))− P(x|y = S(c))
∣∣∣ ≤ 1

π̂min

∣∣∣P̂(x|y = S(c))− P(x|y = S(c))
∣∣∣.
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So,

E[|ŵ(x, c′)− w(x, c)|] ≤ 1
π̂min

E
[

1
P(x|y=S(c)) · (|P̂(x|y = S(c))− P(x|y = S(c))|+ |P̂(x|z = c′)− P(x|z = c)|)

]
= 1

π̂min

∫
Rd

1
P(x|y=S(c)) ·

(
|P̂(x|y=S(c))−P(x|y=S(c))|+|P̂(x|z=c′)−P(x|z=c)|

)
·P(x|y=S(c)) dx

≤ C
π̂min

ε,

since
∫
Rd

∣∣∣P̂(x|z = c)− P(x|z = c)
∣∣∣ dx = 2TV (P̂ (x|z = c), P̂ (x|z = c′)) ≤ 2ε by assumption, and

|P̂(x|y = S(c))−P(x|y = S(c))| is the weighted sum of the total variations between the distributions of each
subclass of S(c), of which there are ≤ C − 1 [assuming there are at least two superclasses, since otherwise the
“classification problem” is trivial].

Now, |R̂c′ − Rc| ≤ 1
#y=S(c)

∑
i|yi=S(c)

|ŵ(xi, c
′
i) − w(xi, ci)|`(f(xi), S(c)). The expectation of each term in the

summation is therefore bounded above by 2MC
π̂min

ε, since the loss is globally bounded by M . Finally, applying
Hoeffding’s inequality yields that |R̂c′ − R̃c| ≤ 2MC

π̂min
ε+O( 1√

n
) with high probability.

Total variation in estimated per-subclass distributions: Gaussian case

[3] provides an algorithm for estimating mixtures of Gaussians; they show that Õ(kd2/ε2) samples are
sufficient to learn a mixture of k d-dimensional Gaussians to within error ε in total variation. Concretely,
given n samples from a mixture-of-Gaussian distribution P and the true number of mixture components k, the
algorithm in [3] returns a k-component mixture-of-Gaussian distribution P̂ such that TV (P, P̂) ≤ Õ(

√
1/n).

To prove Theorem 1, we use this result and bound the overall total variation error in terms of the maximum
per-component total variation error. The proof depends on the key lemma stated below (whose proof appears
at the end of this section). We then apply Lemma 2 to translate this total variation error bound to a bound
on the robust loss of the end model.

In order to apply Lemma 2, we first need to relate the total variation error ε between the mixtures to the
total variation error between the individual mixture components; we show that when ε is small enough, then
the total variation error between the mixture components is O(ε) as well. We state this formally in Lemma 3
(proved later in this section).

Lemma 3. Let P and P̂ be two k-component Gaussian mixtures, and suppose the k components of P, denoted
by p1, . . . , pk, are distinct Gaussian distributions and all have nonzero mixture weights. Similarly denote the k
components of P̂ by p̂1, . . . , p̂k. There exists a constant c(P) depending only on the parameters of P such that
for all sufficiently small ε > 0, whenever TV (P, P̂) ≤ ε it is the case that max

1≤i≤k
min

1≤j≤k
TV (pi, p̂j) ≤ c(P) · ε.

In addition, we use the following standard result from learning theory [29] to relate the minimizer of the
estimated robust training loss R̂robust to the minimizer of the true robust training loss Rrobust.

Lemma 4. Suppose g(·, ·) ∈ [−B,B]. Let f(θ) := E(x,y)∼P [g(x, y; θ)] and let f̂(θ) :=
1

n

n∑
i=1

g(xi, yi; θ), where

{(xi, yi)}ni=1 are IID samples from P . Suppose g(·, ·θ) is L-Lipschitz w.r.t. θ, so f(θ), f̂(θ) are L-Lipschitz.
Then with probability ≥ 1−O(e−p), we have

∀θ s.t. ‖θ‖ ≤ R, |f̂(θ)− f(θ)| ≤ O

(
B

√
p log(nLR)

n

)
(5)

Theorem 1 Proof

Using the preceding lemmas, we will now prove Theorem 1.
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Proof. First, we estimate P̂ using the Gaussian mixture learning algorithm from [3]. With high probability,
this returns a k-component mixture-of-Gaussian distribution P̂ such that TV(P, P̂) ≤ Õ(

√
1/n). By

Lemma 3, if n is large enough then this means that for each subclass c there exists a subclass c′ such that
TV(P(x|z = c), P̂ (x|z = c′)) ≤ Õ(1/

√
n). So, applying Lemma 2, we have that for a fixed function f ,

|R̂c − R̃c| ≤ Õ(1/
√
n), for all subclasses c (WLOG we may reorder the components of P̂ so that c = c′ for all

c, for notational convenience). By Lemma 1 and triangle inequality, |R̂c −Rc| is Õ(1/
√
n) as well. Thus, for

any given f , |R̂robust(f)−Rrobust(f)| = |maxc R̂c −maxcRc| = Õ(1/
√
n) with high probability.

Let R∗robust(f) denote the true population robust loss. Then Lemma 4 says that |Rrobust(f)−R∗robust(f)| with
high probability for all f in the hypothesis class F . Similarly, we can use an analogous uniform convergence
result to show that |R̂robust(f)−Rrobust(f)| ≤ Õ(1/

√
n) for all f in the hypothesis class with high probability.

Thus, by triangle inequality and union bound, |R̂robust(f)−R∗robust(f)| ≤ Õ(1/
√
n) for all f in the hypothesis

class with high probability, and in particular this holds for the minimizer f̂ of R̂robust.

Thus, under the given assumptions, the excess robust generalization risk (i.e., worst-case subclass generalization
risk) of the George model f̂ is Õ(1/

√
n) [which is near-optimal in terms of sample complexity, since Ω(1/

√
n)

is a generic worst-case lower bound even if the subclass labels are known].

Note that a technical requirement of the above argument is that the samples we use to estimate P̂ should be
independent from those we use to compute the robust loss; for this to hold, we may randomly sample half
of the examples to learn the distribution P̂ (and its mixture components), and then use the other half to
minimize the robust loss. This does not change the asymptotic dependency on the number of samples n. [In
practice, however, we use all examples in both phases, to get the most out of the data.]

Lemma 3 Proof

Before we prove Lemma 3, we first provide a simple lemma bounding the total variation distance of two
Gaussians in terms of the Euclidean distance between their parameters, directly based on the results from
[13].

Lemma 5. Let p be a d-dimensional Gaussian with mean µ and full-rank covariance matrix Σ ∈ Rd×d.
Let p′ be another Gaussian with mean µ′ and covariance Σ′. Then there exists a constant c(µ,Σ) [i.e.,
depending only on the parameters of p] such that for all sufficiently small ε > 0, whenever ‖µ− µ′‖2 ≤ ε and
‖Σ− Σ′‖F ≤ ε it is the case that TV (p, p′) ≤ c(µ,Σ) · ε.

Proof. The one-dimensional case is shown in Theorem 1.3 of [13]. The higher-dimensional case follows from
Theorems 1.1 and 1.2 of [13]. Note that the constant c does not depend on ε, although it may depend on
d.

For convenience, we restate Lemma 3 below.

Lemma 3. Let P and P̂ be two k-component Gaussian mixtures, and suppose the k components of P, denoted
by p1, . . . , pk, are distinct Gaussian distributions and all have nonzero mixture weights. Similarly denote the k
components of P̂ by p̂1, . . . , p̂k. There exists a constant c(P) depending only on the parameters of P such that
for all sufficiently small ε > 0, whenever TV (P, P̂) ≤ ε it is the case that max

1≤i≤k
min

1≤j≤k
TV (pi, p̂j) ≤ c(P) · ε.

Proof. The case k = 1 is vacuous (since the “mixture” is simply a single Gaussian); so, suppose k > 1. Denote
the mixture weights of the true distribution P as m1, . . . ,mk, and the mean and covariance parameters of the

individual distributions in P as µ1, . . . , µk,Σ1, . . . ,Σk. In other words, for x ∈ Rd, P(x) =

k∑
i=1

miNµi,Σi(x),

where mi ∈ (0, 1) and Nµ,Σ denotes the normal density with mean µ and covariance Σ. Similarly, denote the
mixture weights of the estimated distribution P̂ by m̂1, . . . , m̂k, and the mean and covariance parameters of
P̂ by µ̂1, . . . , µ̂k, Σ̂1, . . . , Σ̂k. For simplicity assume the covariance matrices Σi of each component in the true
distribution are strictly positive definite (although this is not required).
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Define q(m′1, . . . ,m′k, µ
′
1, . . . , µ

′
k,Σ

′
1, . . . ,Σ

′
k) =

∫
Rd

∣∣∣∣∣
k∑
i=1

miNµi,Σi(x)−
k∑
i=1

m′iNµ′i,Σ′i(x)

∣∣∣∣∣ dx. The domain of q

is constrained to have m′i ∈ [0, 1] for all 1 ≤ i ≤ k and
k∑
i=1

m′i = 1, as well as to have Σ′i be SPD. By definition,

q(m̂1, . . . , m̂k, µ̂1, . . . , µ̂k, Σ̂1, . . . , Σ̂k) is simply twice the total variation between P and P̂.

Note that, since we assumed the mixture components are unique and mi 6= 0 for all i, the only global
minima of q [where q evaluates to 0, which means that P and P̂ are the same distribution] are where
(m′π(i), µ

′
π(i),Σ

′
π(i)) = (mi, µi,Σi) for all 1 ≤ i ≤ k, for some permutation π—in other words, when the two

distributions have the exact same mixture components and mixture weights up to permutation. Further,
it is not hard to see that the ε-sublevel sets of q are contained within compact sets when ε is sufficiently
small, and therefore lim

ε→0
{(m′1, . . . , µ′1, . . . ,Σ′1, . . . ) : q(m′1, . . . , µ

′
1, . . . ,Σ

′
1, . . . ) ≤ ε} is exactly the set of global

minima of q. Finally, note that q is continuous on its domain. Thus, for a fixed distribution P , as ε→ 0, the
set of points such that q(m′1, . . . , µ′1, . . . ,Σ′1, . . . ) ≤ ε is the union of sets of radius O(δ(ε)) around each of
the global minima of q, where δ(ε)→ 0 as ε→ 0. In other words, the set of all Gaussian mixtures P ′ with
TV (P,P ′) ≤ ε is the set of all mixtures P ′ whose parameters {m′i, µ′i,Σ′i} are O(δ(ε))-close to those of the
true distribution P, up to permutation. In particular, if TV (P,P ′) ≤ ε, then for each individual Gaussian
component Nµi,Σi in P , there exists a component Nµ′j ,Σ′j in P ′ whose parameters are O(δ(ε))-close to it, i.e.,
|mi −mj |+

∥∥µi − µ′j∥∥2
+
∥∥Σ′i − Σ′j

∥∥
F
≤ O(δ(ε)).

We now argue that lim
ε→0

δ(ε)
ε must be a constant (i.e., δ is Θ(ε) as ε → 0) in order for the total variation

between the two mixtures to be ≤ ε. We do so by Taylor expanding a set of quantities whose magnitudes
lower bound the total variation between P and P ′, and showing that these quantities are locally linear in the
parameter differences between P ′ and P when these differences are sufficiently small.

By assumption, 2TV (P,P ′) = q(m′1, . . . ,m
′
k, µ
′
1, . . . , µ

′
k,Σ

′
1, . . . ,Σ

′
k) =

∫
Rd

∣∣∣∣∣
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

∣∣∣∣∣ dx
≤ 2ε. Notice that 2TV (P,P ′) = sup

S⊆Md

∫
S

∣∣∣∣∣
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

∣∣∣∣∣ dx ≥
sup
S⊆Md

∣∣∣∣∣
∫
S

(
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

)
dx

∣∣∣∣∣, where Md denotes the collection of all measurable sub-

sets of Rd.

Suppose for now that d = 1. Then, sup
S⊆M

∣∣∣∣∣
∫
S

(
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

)
dx

∣∣∣∣∣ ≥
sup
cj∈R

∣∣∣∣∣
∫ cj

−∞

(
k∑
i=1

miNµi,σ2
i
(x)−

k∑
i=1

m′iNµ′i,σ2′
i

(x)

)
dx

∣∣∣∣∣ = sup
cj∈R
|h(P ′, cj)|, where we define h(P ′; cj) =

h(m′1, . . . ,m
′
k, µ
′
1, . . . , µ

′
k, σ

2′
1 , . . . , σ

2′
k ; cj) :=

k∑
i=1

mi

∫ cj

−∞
Nµi,σ2

i
(x) dx−

k∑
i=1

m′i

∫ cj

−∞
Nµ′i,σ2′

i
(x) dx. So, |h(P ′; cj)|

is a lower bound on twice the total variation between P and P ′, for any value of cj . Let ~v ∈ R3k denote the
vector of parameters (m1, . . . ,mk, µ1, . . . , µk, σ

2
1 , . . . , σ

2
k), and similarly for ~v′. For ease of notation we write

h(~v′; cj) interchangeably with h(P ′; cj) and h(m′1, . . . ,m
′
k, µ
′
1, . . . , µ

′
k, σ

2′
1 , . . . , σ

2′
k ; cj).

Assume TV (P,P ′) ≤ ε, so as argued before ‖~v′ − π(~v)‖2 is O(δ(ε)) for some permutation π and some function
δ with lim

x→0
δ(x) = 0. [More precisely, lim

ε→0
max

~v′:TV (P,P′)≤ε
min
π:π(k)

‖~v′ − π(~v)‖2 = 0.] Without loss of generality,

we will henceforth simply write ~v in place of π(~v). For notational simplicity, let’s write δ := ‖~v′ − ~v‖2. As h
is smooth around ~v, we can Taylor expand h about the point ~v = ~v′ [i.e., {m′1 = m1, ..., µ

′
1 = µ1, ..., σ

2′
1 =
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σ2
1 , ..., σ

2′
k = σ2

k}] to get

h(m′1, . . . ,m
′
k, µ
′
1, . . . , µ

′
k, σ

2′
1 , . . . , σ

2′
k ; cj) = h(~v′) =

h(~v; cj) +∇h(~v; cj)
T (~v′ − ~v) +O(‖~v′ − ~v‖22) .

Note that h(~v; cj) = 0 (since ~v are the true parameters).

∇h(~v; cj)
T = ( ∂

∂m′1
h(~v; cj), . . . ,

∂
∂µ′1

h(~v; cj), . . . ,
∂
∂σ′1

h(~v; cj), . . . ).

∂

∂m′i
h(~v; cj) =

∫ cj

−∞
pµi,σ2

i
(x) dx = 1

2erfc
(
µi−cj√

2σi

)
. [σi denotes the positive root of σ2

i .]

∂

∂µ′i
h(~v; cj) = −mie

−(cj−µi)2/(2σ2
i )

√
2πσi

.

∂

∂σ2′
i

h(~v; cj) =
mie

−(cj−µi)2/(2σ2
i )(µi − cj)

2
√

2πσ3
i

.

Define fi(x) = 1
2erfc

(
µi−x√

2σi

)
for 1 ≤ i ≤ k, −mie

−(x−µi)
2/(2σ2i )√

2πσi
for k + 1 ≤ i ≤ 2k, and mie

−(x−µi)
2/(2σ2i )(µi−x)

2
√

2πσ3
i

for 2k + 1 ≤ i ≤ 3k. So ∇h(~v; cj)
T = (f1(cj), . . . , f3k(cj))

T .

We have |∇h(~v; cj)
T δ+O(‖δ‖22)| ≤ 2ε for all cj ∈ R. Now, we claim that it is possible to select c1, . . . , c3k ∈ R

such that the 3k × 3k matrix with rows ∇h(~v; cj)
T for 1 ≤ j ≤ 3k is nonsingular.

Proof : Suppose that there is a nonzero vector ~w ∈ R3k such that (f1(x), . . . , f3k(x))Tw = 0 for all x ∈ R.
This means that the function w1f1(x) + · · · + w3kf3k(x) is identically 0. But this is impossible unless
~w = 0, as the fi’s form a linearly independent set of functions (which can easily be seen by looking at
their asymptotic behavior). Thus, there is no nonzero vector that is orthogonal to every vector in the set⋃
x∈R
{(f1(x), . . . , f3k(x))}. In particular, this means that we can find c1, . . . , c3k ∈ R such that the matrix with

rows (f1(cj), . . . , f3k(cj)) is nonsingular (i.e., has linearly independent rows).

Call this matrix A. So ‖Aδ + η‖∞ ≤ 2ε = 2ε ‖1‖∞ where η ∈ R3k is such that ‖η‖∞ is O(‖δ‖22) = O(‖δ‖2∞),
and 1 denotes the vector of all ones in R3k. So ‖δ‖∞ −

∥∥A−1η
∥∥
∞ ≤

∥∥δ +A−1η
∥∥
∞ ≤ 2ε

∥∥A−1
∥∥
∞ ‖1‖∞ =

2ε
∥∥A−1

∥∥
∞, where

∥∥A−1
∥∥
∞ is the induced ∞-norm of A−1, and the first inequality follows from the reverse

triangle inequality. Note that
∥∥A−1η

∥∥
∞ ≤

∥∥A−1
∥∥
∞ ‖η‖∞ ≤ O(‖δ‖2∞) since A−1 is defined independently of

δ.

So, ‖δ‖∞ − O(‖δ‖2∞) ≤ 2ε
∥∥A−1

∥∥
∞, and thus ‖δ‖∞ [which is, by definition, the maximum error in any

parameter m1, . . . ,mk, µ1, . . . , µk, σ
2
1 , . . . , σ

2
k up to permutation] is O(ε). But then, the total variation

between each pair of mixture components Nµi,σ2
i
and Nµ′i,σ2′

i
is also O(ε), by Lemma 5.

Thus, when d = 1, if the total variation between the two Gaussian mixtures P and P̂ is O(ε), the total
variation between each mixture component must also be O(ε) [where the big-O notation suppresses all
parameters that depend on the true distribution P], as desired. (Note that total variation is always between
0 and 1.)

Now suppose d > 1. Similarly to before, we have 2ε ≥ 2TV (P,P ′) ≥ max
S⊆Md

∣∣∣∣∣
∫
S

(
k∑
i=1

miNµi,Σi(x)−
k∑
i=1

m′iNµ′i,Σ′i(x)

)
dx

∣∣∣∣∣
≥ max

~cj∈Rd

∣∣∣∣∣
∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞

(
k∑
i=1

miNµi,Σi(x)−
k∑
i=1

m′iNµ′i,Σ′i(x)

)
dx

∣∣∣∣∣ = max
~cj∈Rd

|h(P ′,~cj)|, where we define

h(P ′;~cj) as
k∑
i=1

mi

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
Nµi,Σi(x) dx −

k∑
i=1

m′i

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
Nµ′i,Σ′i(x) dx. Again, we equiv-

alently denote this by h(~v′; cj), where ~v′ ∈ Rk+kd+kd(d+1)/2 := (m′1, ..., vec(µ′1), ..., vec(Σ′1), ...) denotes the
parameters collected into a single vector. As before, we Taylor expand about the point ~v′ = ~v to get that
|∇h(~v;~cj)

T δ +O(‖δ‖2∞)| ≤ 2ε, where δ := ~v′ − ~v.
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Z=1

Z=0

High-accuracy subclass

Low-accuracy subclass

Superclass decision boundary
separates subclasses in the 
presence of a performance gap

Figure 11: A performance gap between subclasses within the same superclass implies a corresponding degree of
separation in feature space. Green and red are true subclasses for the superclass which the model predicts as the gray
region; the decision boundary for the superclass classification task also approximately separates the subclasses.

Now, we compute the entries of ∇h(~v;~cj):
∂

∂m′i
h(~v;~cj) =

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
Nµi,Σi(x) dx =

1

(2π)d/2
√
|det(Σi)|

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
e−(x−µi)TΣ−1

i (x−µi)/2 dx.

∂

∂(µ′i)a
h(~v;~cj) =

mi

(2π)d/2
√
|det(Σi)|

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
(Σ−1

i )a · (x− µi)e−(x−µi)TΣ−1
i (x−µi)/2 dx, where (µi)a

denotes the ath entry of the vector µi and (Σ−1
i )a is the ath row of the matrix Σ−1

i .
∂

∂(Σ′i)ab
h(~v;~cj) = −

mi(Σ
′
i)
−1
ab

2(2π)d/2
√
|det(Σi)|

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
e−(x−µi)TΣ−1

i (x−µi)/2 dx+

mi

(2π)d/2
√
|det(Σi)|

∫ cj1

−∞

∫ cj2

−∞
. . .

∫ cjd

−∞
[(Σ−1

i (x− µi))(Σ−1
i (x− µi))T ]ab e

−(x−µi)TΣ−1
i (x−µi)/2 dx, whereMab de-

notes the (a, b) entry of the matrix M (note that all matrices involved in this expression are symmetric).

Once again, this set of k + kd + kd(d + 1)/2 partial derivatives, considered as functions of ~cj , comprise a
linearly independent set of functions, since the (µi,Σi) pairs are unique. The remainder of the proof proceeds
analogously to the d = 1 case.

D.3 Subclass Performance Gaps Enable Distinguishing Between Subclasses

In this section, we give simple intuition for why a performance gap between two subclasses of a superclass
implies that it is possible to discriminate between the two subclasses in feature space to a certain extent.

For example, suppose the setting is binary classification, and one of the superclasses has two subclasses with
equal proportions in the dataset. Suppose we have access to a model whose training accuracy on one subclass
is x, while its training accuracy on the other subclass is y, where 1 ≥ x > y ≥ 0.

Of the correctly classified examples, x
x+y >

1
2 fraction of them are from the first subclass; similarly, of the

incorrectly classified examples, 1−y
2−x−y >

1
2 fraction of them are from the second subclass.

This means that if we form “proxy subclasses” by simply splitting the superclass into the correctly classified
training examples and incorrectly classified training examples, the resulting groups can in fact be a good
approximation of the true subclasses! This is illustrated in Figure 11. For instance, suppose x = 0.9 and
y = 0.6. Then x

x+y = 0.6 and 1−y
2−x−y = 0.8 - so, 60% of the examples in the first group are from subclass 1,

and 80% of those in the second group are from subclass 2, which is much better than randomly guessing
the true subclasses (in which the concentration of each subclass in each guessed group will approach 50%
as n → ∞). In the extreme case, if one subclass has accuracy 1 and the other has accuracy 0, then the
superclass decision boundary separates them perfectly (no matter their proportions).

Combined with other information, this helps explain why looking at the way each example is classified (such
as the loss of the example or related error metrics) can be helpful to discriminate between the subclasses.
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Figure 12: “Inherent hardness”: the red and blue superclasses overlap, making it impossible to distinguish between
them with perfect overall accuracy. The blue superclass has two subclasses; on the leftmost subclass, the classifier can
attain perfect accuracy.

D.4 Inherent Hardness

We define the “inherent hardness” of a (task, function class) pair as the minimum attainable robust error, i.e.,

argmax
f∈F

min
c∈{1,...,C}

E(x,y)|z=c [1(f(x) = y)] ,

where the function class is denoted by F . (This can be thought of as the “Bayes robust risk.”) We allow the
function f to be stochastic: i.e., for a given input x, it may output a fixed probability distribution over the
possible labels, in which case we define 1(f(x) = y) as the probability assigned by f to the label y, given
input x. By definition, the inherent hardness lower bounds the robust error attained by any classifier in F ,
regardless of how it is trained or how much data is available. The only way to improve robust performance is
therefore to either make the model class F more expressive (i.e., include more functions in F) or to collect new
data such that the covariates x include more information that can be used to distinguish between different
classes. (Of course, both of these changes would be expected to improve overall performance as well, if
sufficient data is available.) Thus, addressing hidden stratification effects caused by “inherent hardness” is
beyond the scope of this work. A simple example of an “inherently hard” task (i.e., a task with nonzero
“inherent hardness”) is shown in Figure 12; no classifier can get perfect accuracy on every subclass, because
the two superclasses overlap and thus it is impossible to distinguish between them in the region of overlap.
Nevertheless, it is possible to attain perfect accuracy on some subclasses in this example, meaning that there
will still be performance gaps between the subclasses.

D.5 GDRO with soft group assignments

As shown above in Appendix D.2, we can minimize max
c∈[C]

Ex∼P̂S(c)
[ŵ(x, c)`(x, S(c); θ)] as a surrogate for

max
c∈[C]

Ex∼Pc [`(x, S(c); θ)]. Here, P̂S(c) is the empirical distribution of training examples of superclass c, ŵ(x, c)

is shorthand for
P̂(x|z = c)

P̂(x|y = S(c))
, and `(x, S(c); θ) is shorthand for `(fθ(x), S(c)), where fθ is a classifier param-

eterized by θ. If we define the density Ac(x, z) = P̂S(c)(x)1(z = c), then max
c∈[C]

Ex∼P̂S(c)
[ŵ(x, c)`(x, S(c); θ)] =

max
c∈[C]

E(x,z)∼Ac [ŵ(x, z)`(x, S(z); θ)].

If we now define ˜̀(x, z; θ) := ŵ(x, z)`(x, S(z); θ), we see that this falls directly within the group DRO
framework of [43]. We thus obtain Algorithm 2, which is a minor modification of Algorithm 1 of [43].

The weights ŵ(x, c) correspond to “soft labels” indicating the probability a particular example came from a
particular superclass; notice that that E(x,z)∼Ac [ŵ(x, z)`(x, S(z); θ)] depends on every training example in
the superclass S(c), so each training example is used in multiple terms in the maximization.

Finally, note that if the assumptions (informally: nonnegativity, convexity, Lipschitz continuity, and bounded-
ness) of Proposition 2 in [43] hold for the modified loss l̃(x, z; θ), then the convergence guarantees carry over
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Algorithm 2 Modified Group DRO

Input: Step sizes ηq, ηθ; empirical per-superclass distributions P̂b for each superclass b ∈ [B]
Initialize θ(0) and q(0)

for t = 1, . . . , T do
c ∼ Uniform(1, . . . , c)
x ∼ P̂S(c)

q′ ← q(t−1)

q′c ← q′c · exp
(
ηq · ŵ(x, c) · `(x, S(c); θ(t−1))

)
q(t) ← q′/

∑
c q
′
c

θ(t) ← θ(t−1) − ηθ · q(t)
c · ŵ(x, c) · ∇θ`(x, S(c); θ(t−1))

end for

as well, since Algorithm 2 is a specific instantiation of Algorithm 1 from [43]. So, under these assumptions,
the convergence rate of Algorithm 2 is O(1/

√
T ), where T is the number of iterations. [Specifically, the

average iterate after T iterations achieves a robust loss that is O(1/
√
T ) greater than that of the minimizer

of the robust loss.]

In our experiments, we found hard clustering to work better than soft clustering; as it also has the advantage
of simplicity, all evaluations were performed with hard clustering.
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